Guest lecture by Dr. Arne Grimsmo

Quantum Mechanics

Lecture 19 (non-examinable)

Cat states; Encoding quantum information in harmonic oscillators.

Quantum harmonic oscillators in real life

Mechanical

Electromagnetic fields in cavities

Electrical

Quantum phase space and Wigner functions

One way to make sense of quantum phase space is with the *Wigner function*. Starting from a wave function ψ , we transform it as follows:

$$W(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \langle x - y | \psi \rangle \langle \psi | x + y \rangle e^{2iyp/\hbar} dy$$

W(x,p) can be used to visualize quantum states

Bits and qubits: From classical to quantum information

Is there a quantum analog, a "unit" of quantum information?

The "qubit": $\{|0\rangle, |1\rangle\}$

In principle any pair of quantum states will do For example, the two lowest states of a quantum harmonic oscillator

 $|n = 0\rangle, |n = 1\rangle$

- A single bit takes a binary value {0, 1} and is the "unit" of classical information

 - $c_0 | 0 \rangle + c_1 | 1 \rangle$

Manipulating classical information

Any classical computation can be generated using only a very small set of "logic gates" acting on 1 or 2 bits at a time, e.g.

Manipulating quantum information

Quantum "logic gates" are unitary operators acting on a state

One-qubit gate: $U|\psi\rangle = U(c_0|0\rangle + c_1|1\rangle)$ (2x2 matrix)

(4x4 matrix)

Example: NOT = $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \hat{\sigma}_x$

Two-qubit gate: $U|\psi\rangle = U(c_{00}|0\rangle|0\rangle + c_{01}|0\rangle|1\rangle + c_{10}|1\rangle|0\rangle + c_{11}|1\rangle|1\rangle)$

 $\begin{array}{c|c} A & \text{not } A \\ |0\rangle & |1\rangle \end{array}$ $|0\rangle$

What are quantum computers good for?

Quantum computers can (in theory) solve in a matter of days/hours/weeks some computational problems that would take a conventional computer longer than the lifetime of the universe. The potential is vast...

Chemistry and material simulations (drug discovery, new materials etc.) **Optimization problems** Machine learning Save the environment, cure cancer, end poverty, ...

Why don't we have (useful) quantum computers yet?

The fundamental problem: qubits are extremely fragile

Energy loss $\hat{a}(c_0|0\rangle + c_1|1\rangle) = c_1|0\rangle$

Encoded information is lost!

In practice, many other sources of errors, but energy loss is often the dominant cause of faults.

Encoding quantum information robustly

Idea: Use coherent states as logical states

$$|0\rangle \rightarrow |\alpha\rangle, |1\rangle \rightarrow |-\alpha\rangle$$

 $\hat{a} \mid \pm \alpha \rangle \propto \pm \mid \alpha \rangle$ States not destroyed:

But superpositions not preserved:

 $\hat{a}(c_0 | \alpha) + c_1 | - \alpha) \propto c_0 | \alpha \rangle - c_1 | - \alpha \rangle$

So this did not quite work... can we fix it?

Good!

 $c_1 \rightarrow - c_1$

this is called a "phase error" Bad!

Cat-state qubits

New idea: Use *superpositions* of coherent states as logical states $|0\rangle \rightarrow |0_I\rangle = |\alpha\rangle + |-\alpha\rangle$ $|1\rangle \rightarrow |1_I\rangle = |i\alpha\rangle + |-i\alpha\rangle$ States not destroyed, but they do change: $\hat{a} | 0_I \rangle \propto | \alpha \rangle - | - \alpha \rangle =: | 0'_I \rangle$ $\hat{a} | 1_I \rangle \propto | i \alpha \rangle - | - i \alpha \rangle =: | 1'_I \rangle$ $\hat{a}(c_0|0_L\rangle + c_1|1_L\rangle) \propto (c_0|0_L'\rangle + c_1|1_L'\rangle)$ Quantum information in principle preserved, even though the states changed!

Cat-state qubits

$$|0\rangle \rightarrow |0_L\rangle = |\alpha\rangle + |-\alpha\rangle$$

 $\hat{a}(c_0 | 0_I) + c_1 | 1_I) \propto (c_0 | 0_I') + c_1 | 1_I')$

If we can find a way to detect that the error has happened, we can simply update the "encoding" $|0_L\rangle, |1_L\rangle \rightarrow |0'_L\rangle, |1'_L\rangle$

But how do we do this without destroying the encoded information?

What does the measurement need to distinguish, and what must it not distinguish?

$|1\rangle \rightarrow |1_I\rangle = |i\alpha\rangle + |-i\alpha\rangle$

Detecting errors

Let's have a look at what the states look like in the number basis

$$|0_L\rangle = |\alpha\rangle + |-\alpha\rangle = C_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^n + (-\alpha)^n}{\sqrt{n!}} |n\rangle = 2C_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^{2n}}{\sqrt{(2n)!}} |2n\rangle$$

$$|0_L'\rangle = |\alpha\rangle - |-\alpha\rangle = C_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^n - (-\alpha)^n}{\sqrt{n!}} |n\rangle = 2C_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{\sqrt{(2n+1)!}} |2n+1\rangle$$

Recall:
$$|\alpha\rangle = C_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Detecting errors

Similarly

$$|0_L\rangle = 2C_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^{2n}}{\sqrt{(2n)!}} |2n\rangle$$

$$|1_L\rangle = 2C_{\alpha} \sum_{n=0}^{\infty} \frac{(i\alpha)^{2n}}{\sqrt{(2n)!}} |2n\rangle$$

Even number parity

Measure number parity to detect error!

Is there an observable for number parity? $\hat{\Pi} = (-1)^{\hat{n}} = (-1)^{\hat{a}^{\dagger}\hat{a}}$

$$|0'_L\rangle = 2C_{\alpha} \sum_{n=0}^{\infty} \frac{\alpha^{2n+1}}{\sqrt{(2n+1)!}} |2n+1\rangle$$

$$|1'_L\rangle = 2C_{\alpha} \sum_{n=0}^{\infty} \frac{(i\alpha)^{2n+1}}{\sqrt{(2n+1)!}} |2n+1\rangle$$

Odd number parity

A protocol for storing quantum information robustly

1. Encode $|0\rangle \rightarrow |0_I\rangle = |\alpha\rangle + |-\alpha\rangle$ $|1\rangle \rightarrow |1_I\rangle = |i\alpha\rangle + |-i\alpha\rangle$ 2. Check for errors by measuring number parity $\hat{\Pi} = (-1)^{\hat{n}} = (-1)^{\hat{a}^{\dagger}\hat{a}}$

3. Re-define encoding as needed if parity has changed $|0_I\rangle \rightarrow |0'_I\rangle \qquad |1_I\rangle \rightarrow |1'_I\rangle$

4. Repeat 2. & 3. for as long as we need to store the information

Extra slide: The quantum LC oscillator

Classical energy

H =

Rewrite by d

H :

Harmonic oscillator with "mass" C, "position" Φ and "momentum" Q

 $\hat{H} = \frac{\hat{Q}^2}{2C} + \frac{1}{2}C\omega^2 \hat{\Phi}^2$

$$= \frac{Q^2}{2C} + \frac{\Phi^2}{2L}$$
 Q = charge
 Φ = magnetic flux

lefining
$$\omega = 1/\sqrt{LC}$$

$$=\frac{Q^2}{2C}+\frac{1}{2}C\omega^2\Phi^2$$

$$[\hat{\Phi}, \hat{Q}] = i\hbar$$