Prof. Steven Flammia

Quantum Mechanics

Lecture 1

Course administration; Review of Dirac notation and state space; Operators in quantum mechanics; Observables, expected values, unitary dynamics.

Administration

- * PHYS 3x34, advanced stream 3rd year Quantum Physics. * Teaching assistant: Alistair Milne, <u>amil1264@uni.sydney.edu.au</u> * Course website: <u>www.physics.usyd.edu.au/~sflammia/Courses/QM2019/</u>

- * 4 Quizzes to be held during Lectures 5, 8, 11, 14.
- * 2 Assignments, 1 Exam.
- * Marks apportioned: 0.2 Q + 0.2 A + 0.6 E.

Why quantum physics?

- * One of the most stunning intellectual achievements in human history.
- * It raises deep philosophical and conceptual questions:
 - * Determinism, causality, information, locality, even reality itself.
- * Huge range of scientific and practical applicability:
 - * Neutron stars, elementary particles, fission and fusion, magnetism, lasers, transistors, superconductors, chemistry, fiber optics, quantum computers...
- * Despite a fearsome reputation, the principles of quantum physics are *simple*.

1927 Solvay conference

29 attendees, 17 Nobel laureates, 18 Nobel prizes.

Dirac notation

Recall that quantum mechanical systems are described by states.

Kets = column vectors

Bras = row vectors

Inner product

States must be **normalized**.

Can express any vector in an orthonormal basis.

Dirac notation

Example: spin-1/2 system

Finite-dimensional quantum systems

More generally, consider a system with a finite number of orthogonal states.

Finite-dimensional quantum systems

More generally, consider a system with a finite number of orthogonal states.

Any complete orthonormal basis forms a resolution of the identity. *Example*: spin-1/2

Different basis choices allow us to expand states in different bases:

In general, any linear operator of commensurate dimension can act on a state. Operators can be thought of as acting from the **left** or from the **right**.

The Hermitian conjugate (complex conjugate + transpose) relates the two actions. Operator ordering follows the conventions of matrix multiplication.

Operators do not commute!

Eigenstates and eigenvalues

Eigenvalues and eigenstates (or eigenvectors, same thing) are solutions to:

then the length can be chosen to be 1.

A huge fraction of practical quantum calculations involves finding eigenstates and eigenvalues.

The length of the eigenvector is not specified by this equation, but if it is nonzero,

Observables and expected values

Observables are operators that are also self-adjoint (or just Hermitian):

They have a complete set of orthonormal eigenvectors and real eigenvalues.

We are often interested in computing expected values of operators (usually for observables, but it can be done more generally).

The Born rule and unitary dynamics

The probability of an outcome of a measurement is given by the Born rule. *Example*: spin-1/2

Unitary matrices are the inverse of their adjoint:

Unitary dynamics therefore preserves total probability:

