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Time evolution and the Schrödinger equation;
The Hamiltonian as the generator of time translations;
Wave functions in infinite-dimensional Hilbert spaces; 
Position operator and position basis.



Commuting operators
Consider the case of two nondegenerate operators A and B 
Suppose they are Hermitian and that they commute.

More generally, commuting Hermitian operators share a common eigenbasis.  
(The proof can be done by generalizing the above argument.)

To track commutativity (or lack thereof), introduce the commutator:
Many nice algebraic identities…



Unitary time evolution

Let’s look at the unitary operator that translates a state in time: 

Recall, it must be unitary to conserve probability.

Rather than study the most general such operator, Taylor expand for small time:

Unitarity at first order in dt implies:



The Schrödinger equation

What about at large times? We can expand again, but around t.

Schrödinger equation,  
operator form

When H is time-independent, the general solution is:



The Schrödinger equation

Applying both sides to some initial state          , we find

iℏ
d
dt

U(t) = H U(t)

Schrödinger equation,  
operator form

Is this still unitary for all t, not just dt? Assuming H is independent of t: 

|ψ(0)⟩

Schrödinger equation,  
state vector form



The Hamiltonian operator
Let’s continue assuming that H is independent of t. 

Recall that H has units of energy.

It is self-adjoint, so it is an observable with real eigenvalues.

It commutes with U(t):

What is the expected value of H?

We therefore define H to be the Hamiltonian or energy operator. 



The Hamiltonian operator
What are the eigenstates of H? The energy eigenstates:

The energy eigenstates are “stationary” with respect to time:

Superpositions of energy eigenstates have non-trivial dynamics.  
Example:



Time dependence of expected values
What about time dependence of expected values more generally?

Operators A that are independent of time are conserved iff they commute with H.



Position basis
Our derivation of the Schrödinger equation was completely general. But let’s  
focus on a special case more challenging than spin degrees of freedom: position.

Unlike spin, which takes a finite set of values, position is a continuous variable.

In analogy with spin, let’s consider a 1D line and define a position operator:

We should be able to expand any state in the position basis. Because position is a  
continuous variable, the resolution of the identity takes an integral form: 



Real-space wave functions
This suggests defining the wave function        :ψ(x)

What is the Born rule probability for finding the particle at x?

What is the Born rule probability for finding the particle between x and x+dx?



Position eigenstates and the Dirac delta function
Are the eigenstates of the position operator valid wave functions?

The Dirac delta function:

The Dirac delta function is not a normalizable wave function, so position 
eigenstates are not physically realizable.



Expected values and overlaps

The trick is always to insert a resolution of the identity.


