Prof. Steven Flammia

Quantum Mechanics

Lecture 6

AM matrices: spin 1/2 example; Reduction of the two-body problem; Angular momentum revisited; Commutation relations; Simultaneous eigenstates.

A quick recap

Angular momentum eigenstates satisfy:

$$J^2 |j,m\rangle = j(j+1)\hbar^2 |j,m\rangle$$

The eigenvalues are constrained:

Allowed values for *j* are:

2j+1 total states:

The matrix elements of the raising and lowering operators are:

$$\langle j, m' | J_{\pm} | j, m \rangle = \sqrt{j(j+1)} - m(m \pm 1)\hbar\delta_{m',m\pm 1}$$

$J_{z}|j,m\rangle = m\hbar|j,m\rangle$

$$j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$$

$$m = j, j - 1, j - 2, \dots, -j$$

Example: spin 1/2

Recall: $\langle j, m' | J_{\pm} | j, m \rangle = \sqrt{j(j+1)} - m(m \pm 1)\hbar \delta_{m', m \pm 1}$

Set j = 1/2.

Now m = +1/2 or -1/2 only.

Let's derive the spin operators for a spin-1/2 system using these formulas.

Example: spin 1/2

Recall: $\left\langle \frac{1}{2}, m' \middle| J_{\pm} \middle| \frac{1}{2}, m \right\rangle = \sqrt{\frac{3}{4}} - m(m \pm 1)\hbar \delta_{m', m \pm 1}$

Let's derive the spin operators for a spin-1/2 system using these formulas.

Example: spin 1/2

Recall: $J_{\pm} = J_x \pm i J_y$

These formulas exactly recover the Pauli spin matrices in the z-basis!

Let's derive the spin operators for a spin-1/2 system using these formulas.

Two-body Hamiltonian with interaction

The potential energy depends only on the **distance** between the particles. Transform to center-of-mass and relative coordinates:

Total linear momentum.

Total mass.

Relative linear momentum.

Reduced mass.

Consider a Hamiltonian with two interacting particles that are otherwise free:

Position ket in 3D:

Total state space:

Total linear momentum:

Center-of-mass position

Relative position.

Reduced Hamiltonian

Rewrite the Hamiltonian in the new coordinates:

Energy eigenstates can be labeled by total momentum *P*:

We can always choose a co-moving frame so that:

Angular momentum operator revisited

Spherical coordinates

The new Hamiltonian is radially symmetric, so we expect AM conservation.

To show this, consider an AM operator *L_z* and it's associated rotation operator:

Commutation relations

Repeating the argument with cyclic symmetry, we conclude that:

This implies commutation relations with position and momentum:

Commutation relations

Repeating the argument with cyclic symmetry, we conclude that: $\mathbf{L} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$

This implies commutation relations with position and momentum:

The Hamiltonian conserves AM

We have established that the Hamiltonian conserves angular momentum:

$$H = \frac{\hat{\mathbf{p}}^2}{2\mu} + V(|\hat{\mathbf{r}}|)$$

There is nothing special about the z direction... the same is true for x and y! But L_z does not commute with L_x or L_y , so we can only choose one simultaneous symmetry.

Simultaneous eigenstates

$$H = \frac{\hat{\mathbf{p}}^2}{2\mu} + V(|\hat{\mathbf{r}}|) \qquad [L_z, H] = [L^2, H] = [L_z, L^2] = 0$$

Therefore, a simultaneous eigenbasis exists for all three of H, L^2 , L_z :

Next lecture, we will see how this allows us to decouple the angular and radial parts of the wave function and solve the Schrödinger equation separately for each part.

The rotational symmetry establishes the following commutations relations: