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(Quantum Mechanics

Lecture 7

Spherical coordinates;
Separation of variables;
Angular quantum numbers;
Intrinsic vs. orbital AM;
Spherical harmonics.




A quick recap

A two-body interacting Hamiltonian can be transtormed to relative coordinates:
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Angular momentum commutes with H, so simultaneous eigenstates exist:
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Spherical coordinates

To exploit the symmetry of the reduced H, transform to spherical coordinates:

In cartesian coordinates x = (x, y, 2)

In spherical coordinates r = (7, 8, @)



Spherical coordinates

Recall our expression for L:

Now use the gradient formula:

Compare with the previous expression:
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Spherical coordinates

We ther efor c have: In spherical coordinates r = (7, 0, @)

For the simultaneous eigenstates:

The time-independent Schréodinger eq. in radial coordinates becomes:



Separation of variables

The L.H.S. is independent of (6,¢), so solve via separation of variables.

Canceling the angular parts yields an equation for the radial wave function:

Now make a substitution:



Radial wave function

The radial equation is thus equivalent to

This is the single-particle Schrodinger equation!

Note that this is independent of m, the L, eigenvalue.



Angular quantum numbers

Recall our ansatz:
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What about the angular part?
Recall, L. is the generator of rotations around the z axis. Therefore:

Acting on the eigenstates we find:



Angular quantum numbers

Recall our ansatz:
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However, m must be quantized:

But m still depends on I:



Angular quantum numbers

Recall our ansatz:
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What about the polar angle?
They are the associated Legendre polynomials: Sphel‘ ical harmonics:
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Where does this come from? \
The equation has spherical symmetry; this is the analog e
of Fourier decomposition for periodic functions. azimuthal puine t
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Spherical harmonics

The form of the spherical harmonics can be found explicitly via ladder operators:
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Now use on the highest/lowest weight states:



Spherical harmonics

This must be normalized:

Use lowering operator to obtain other solutions:
Ll = \/l(l+ )—m(m—1)|1l,m)




