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Spherical coordinates;
Separation of variables;
Angular quantum numbers;
Intrinsic vs. orbital AM;
Spherical harmonics.



A quick recap

A two-body interacting Hamiltonian can be transformed to relative coordinates:

Angular momentum commutes with H, so simultaneous eigenstates exist:

H =
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+ V( | ̂r1 − ̂r2 | ) ⇒ H =
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2μ
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[Lz, H] = [L2, H] = [Lz, L2] = 0 H |E, l, m⟩ = E |E, l, m⟩
L2 |E, l, m⟩ = l(l + 1)ℏ2 |E, l, m⟩
Lz |E, l, m⟩ = mℏ |E, l, m⟩L = ̂r × p̂ Lz = ̂x ̂py − ̂y ̂px

(+ cyclic)



Spherical coordinates
To exploit the symmetry of the reduced H, transform to spherical coordinates:
In cartesian coordinates x = (x, y, z)

In spherical coordinates r = (r, θ, ϕ)



Spherical coordinates
Recall our expression for L:

Now use the gradient formula:

∇2ψ(r) =
1
r2

∂
∂r (r2 ∂ψ

∂r )+
1

r2sin θ
∂
∂θ (sin θ

∂ψ
∂θ )+

1
r2sin2 θ

∂2ψ
∂φ2

Compare with the previous expression:



Spherical coordinates
We therefore have: In spherical coordinates r = (r, θ, ϕ)

The time-independent Schrödinger eq. in radial coordinates becomes:

For the simultaneous eigenstates:



Separation of variables
The L.H.S. is independent of (θ,φ), so solve via separation of variables.

Canceling the angular parts yields an equation for the radial wave function:

Now make a substitution:



Radial wave function
The radial equation is thus equivalent to

This is the single-particle Schrödinger equation! 

Note that this is independent of m, the Lz eigenvalue.



Angular quantum numbers
Recall our ansatz:

R(r) = u(r)
r

What about the angular part? 
Recall, Lz is the generator of rotations around the z axis. Therefore:

ψE,l,m(r) = ⟨r |E, l, m⟩ = R(r)F(θ, ϕ)
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Acting on the eigenstates we find:



Angular quantum numbers
Recall our ansatz:

R(r) = u(r)
r

However, m must be quantized:

ψE,l,m(r) = ⟨r |E, l, m⟩ = R(r)Θ(θ)Φ(ϕ) Φ(ϕ) ∝ exp(imϕ)

But m still depends on l:



Angular quantum numbers
Recall our ansatz:

R(r) = u(r)
r

ψE,l,m(r) = ⟨r |E, l, m⟩ = R(r)Θ(θ)Φ(ϕ) Φ(ϕ) ∝ exp(imϕ)

What about the polar angle?

Ym
l (θ, ϕ) = Nl,meimϕPm

l (cos θ)
Spherical harmonics:
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azimuthal  
component

polar  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They are the associated Legendre polynomials:

Θ(θ) ∝ Pm
l (cos θ)

Where does this come from?  
The equation has spherical symmetry; this is the analog  
of Fourier decomposition for periodic functions.



Spherical harmonics
The form of the spherical harmonics can be found explicitly via ladder operators:
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ℏ
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Now use on the highest/lowest weight states:

L± = Lx ± iLy



Spherical harmonics
This must be normalized:

L− | l, m⟩ = l(l + 1) − m(m − 1) | l, m⟩

Use lowering operator to obtain other solutions:


