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Degenerate perturbation theory;
Example: the Stark effect.



A quick recap
Suppose a complicated Hamiltonian splits into two pieces, 

The first few terms are given by:
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And suppose we can solve the simple part:

Assume that the full system can be solved as a power series:



Degeneracy
We run into problems with this prescription when there is degeneracy: 

A simple example will illustrate the reason for the singularity and suggest a 
possible resolution to the problem.
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The 1st order eigenstate corrections (and 2nd order energy corrections, too) are 
singular in this case!



Degeneracy
Consider a two-state system with a trivial Hamiltonian and eigenstates:

Now add a small perturbation and solve:

Perturbation theory gives the wrong answer, even at 1st order!



Degeneracy
Problem: Our initial choice of basis “didn’t know” about the new basis after the 
perturbation, leading to large changes in the state for small perturbations.   
 
Solution: In a degenerate subspace there is no preferred basis, so we should 
make a basis choice that is sensitive to how the symmetry breaks. 

To have a hope of a solution, we should try a basis such that:



Diagonalizing in a degenerate subspace
Consider a complete set of states with a given degenerate energy E:

A resolution of the identity within the degenerate subspace is given by:

Let’s focus on just the 1st order energy equations for a general state in 1E:



Diagonalizing in a degenerate subspace
Apply the projector 1E on the left:

1E |ψE⟩ = |ψE⟩H0 |ϕ(1)⟩ + H1 |ψE⟩ = E |ϕ(1)⟩ + E(1) |ψE⟩|ψE⟩ = ∑
j

cj |χj⟩

The 1st-order energy shifts are eigenvalues of H1 in the degenerate subspace, 
and the 1st-order eigenstates are the eigenstates of H1.



Stark effect
Electric dipole coupling:

1st order energy corrections to the ground state:

2nd order energy corrections to the ground state:



Stark effect
Need degenerate perturbation theory for n=2 subspace; it contains 4 states:

We need to write out all 16 elements of the 4 x 4 matrix:

Fortunately, symmetry helps us. Many terms vanish because Lz is conserved:



Stark effect

H11 H12 0 0
H21 H22 0 0
0 0 H33 0
0 0 0 H44
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Therefore:

The diagonal elements also vanish by symmetry:



Stark effect

0 H12 0 0
H21 0 0 0
0 0 0 0
0 0 0 0

1EH11E
E=E2

m =    0           0        1     -1

m’ =     
      0 
 
       0

      1

     -1

Therefore:

The remaining element is nonzero:

H11 H12 0 0
H21 H22 0 0
0 0 H33 0
0 0 0 H44

⟶



Stark effect
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The eigenvalues and eigenvectors tell us the first order corrections:

By inspection, we find:
Stark shift energy level diagram:
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