Prof. Steven Flammia

Quantum Mechanics

Lecture 11

Quiz 2; Spin-orbit coupling; Fine structure of Hydrogen.



A quick recap

Suppose a complicated Hamiltonian splits into two pieces,

$H = H_0 + \lambda H_1$

and that an eigenspace of H_0 with energy *E* is **degenerate** with *N* states.

$$|\chi_{j}\rangle := |\phi_{E}^{(0)}, j\rangle \qquad j = 1, ..., N$$

Then the first order corrections to the eigenstates and eigenvalues are found by diagonalizing the perturbing Hamiltonian:

$$\sum_{j=1}^{N} |\chi_j\rangle \langle \chi_j| = 1_E$$

Perturbations will in general break the degeneracy.

 $H_0|\chi_i\rangle = E|\chi_i\rangle \qquad E = E^{(0)}$

 $1_E H_1 1_E |\psi_E\rangle = E^{(1)} |\psi_E\rangle$

Spin-orbit coupling

Moving charges generate currents, and hence magnetic fields:

This B-field will couple to the electron spin:

This argument ignores relativistic effects. A complete treatment includes an effect called Thomas precession and gives the spin-orbit Hamiltonian:

Spin-orbit coupling

We will consider the spin-orbit interaction as a perturbation that will split the degenerate states of a hydrogen atom. To that end, define:

To do degenerate perturbation theory, we must diagonalize:

Total angular momentum is conserved

Total J and J_z also give good quantum numbers for H_{SO} :

Note:

We conclude that *s*, *l*, *j* and $m_i = m_l + m_s$ are all good quantum numbers for H_{SO} .

Degenerate perturbation theory for H_{SO}

There are now $2n^2$ degenerate states for each *n* (due to electron spin). We can again use symmetry to our advantage to diagonalize in each subspace.

Of the original eigenstates, which can possibly contribute as a linear combination of the new eigenstates? At most two states are consistent:

Matrix elements for Hso

What are the matrix elements $\langle \chi_i | H_{SO} | \chi_k \rangle$ of H_{SO} in this basis?

Rewrite in terms of raising and lowering operators:

Matrix elements are now straightforward to calculate. Example:

The matrix in this basis (for fixed *l*, *n*) is:

Diagonalizing this gives us the new eigenstates and eigenvalues.

Eigenvectors

The eigenvectors are as follows:

Recall:
$$m_j = m_l + \frac{1}{2}, j = l \pm \frac{1}{2}, |\chi_1\rangle =$$

As in the Stark effect, the new energy eigenstates will now have distinct energies.

$|l, m_l, \frac{1}{2}, \frac{1}{2}\rangle, |\chi_2\rangle = |l, m_l + 1, \frac{1}{2}, -\frac{1}{2}\rangle$

Energy corrections

The final step is to compute the corrections to the energy at 1st order: