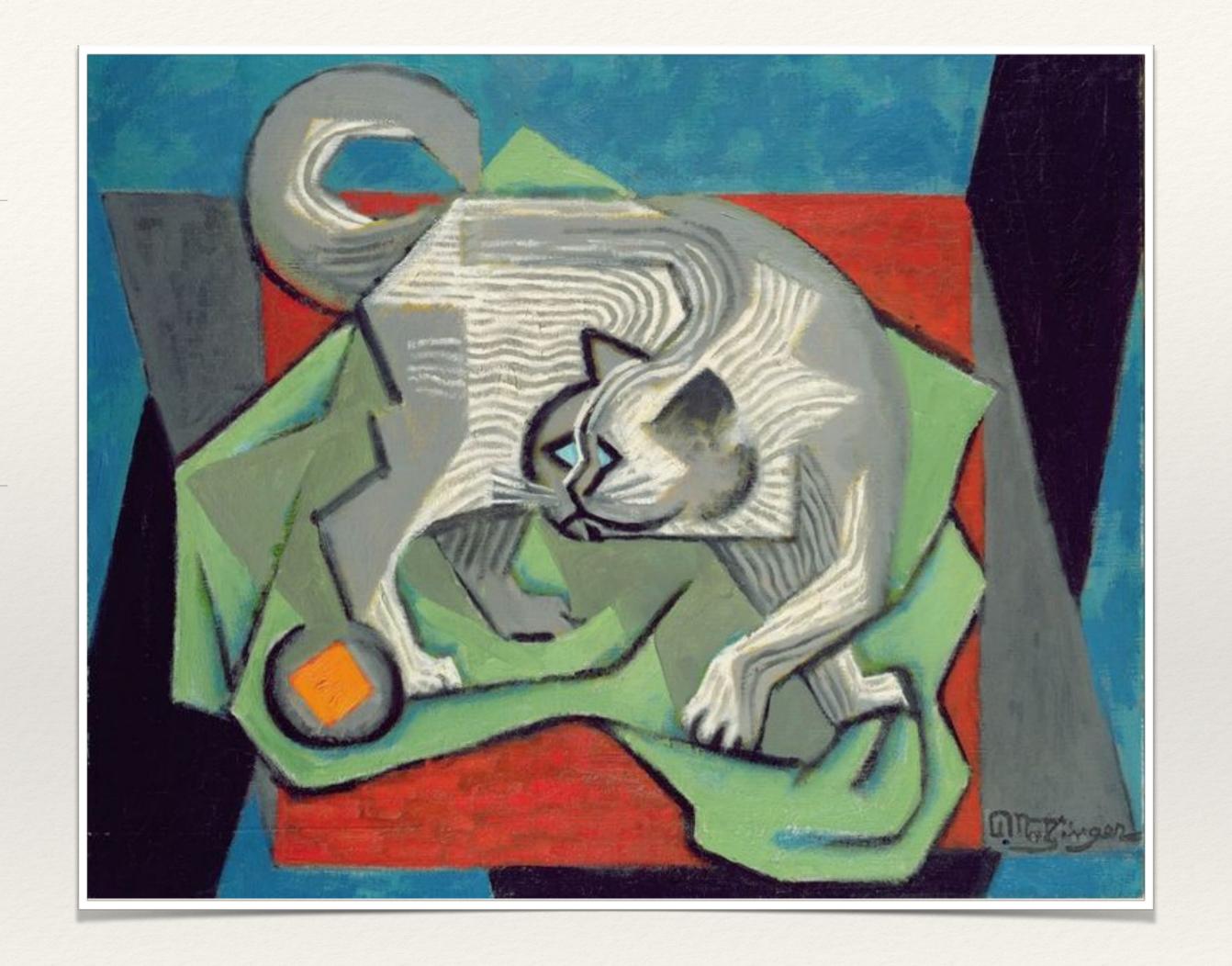
Quantum Mechanics

Lecture 12

Hyperfine structure;
Singlet and triplet states;
Addition of angular momentum;
Clebsch-Gordan coefficients.



A quick recap

The spin and orbital AM of an electron couple to give fine structure.

$$H_{SO} \propto \mathbf{S} \cdot \mathbf{L}$$
 [S, L] = 0

Some of old quantum numbers become "bad" and must be replaced:

$$[H_{SO}, S_z] \neq 0, [H_{SO}, L_z] \neq 0$$

We defined a new total AM operator: $\mathbf{J} = \mathbf{S} + \mathbf{L}$, $[S^2, J_z] = [L^2, J_z] = 0$ The symmetries of H_{SO} are now:

$$[H_{SO}, S^2] = [H_{SO}, L^2] = [H_{SO}, J^2] = [H_{SO}, J_z] = 0$$

$$(l, m_l, s, m_s) \rightarrow (l, s, j, m_j)$$
 old quantum numbers numbers (n is still good, too)

A quick recap

The new quantum numbers j, m_j are expressions of conservation of AM:

$$m_j = m_l + \frac{1}{2}, j = l \pm \frac{1}{2}$$

The new states that diagonalize H_{SO} are linear combinations of the old ones:

$$|\chi_1\rangle = |l, m_j - \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\rangle, \quad |\chi_2\rangle = |l, m_j + \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\rangle$$

$$|l\pm\frac{1}{2},m_j\rangle=\alpha_{\pm}|\chi_1\rangle\pm\beta_{\pm}|\chi_2\rangle$$
 (Just some coefficients... we can look them up.)

The corrections to the energy are found by taking expected values.

$$E_{SO}^{(1)} = \langle n, j, m_j | H_{SO} | n, j, m_j \rangle$$

Hyperfine structure

We can follow this recipe again to understand the **hyperfine structure**, i.e. the splitting in energies due to spin-spin coupling between the electron and proton.

For simplicity, we restrict our discussion to the hydrogen ground state n = 1.

Before perturbation, 4 degenerate states:

Introducing a total AM operator is a very good idea:

Total angular momentum is conserved

Total F and F_z also give good quantum numbers for H_{HF} :

Note:

We conclude that f and $m_f = m_i + m_s$ are good quantum numbers for H_{HF} .

Matrix elements for HHF

What are the matrix elements $\langle \chi_j | H_{HF} | \chi_k \rangle$ of H_{HF} in the unperturbed basis? Rewrite in terms of raising and lowering operators:

Matrix elements are now straightforward to calculate. Example:

Eigenvalues

The matrix in this basis is:

(all other terms vanish)

$$H_{HF} = \frac{2A}{\hbar^2} \mathbf{S} \cdot \mathbf{I} \longrightarrow \begin{pmatrix} A/2 & & \\ & -A/2 & A \\ & A & -A/2 \end{pmatrix}$$

Diagonalizing this gives us the new eigenstates and eigenvalues.

Eigenvalues:

Eigenvectors:

Quantum numbers

The new total AM quantum numbers are constrained

For consistency, use:

Two choices:

Again we see that total angular momentum adds up nicely:

In terms of the new f quantum number, the states have a natural interpretation:

Addition of angular momenta

General question:

Given two spins, j_1 and j_2 , what are the allowed values of total AM?

For each value of the total spin, we can have a z-component:

We want to be able to answer questions like (for example):

A spin $j_1 = 3/2$ and spin $j_2 = 1$ particle have total spin J = 3/2 and M = 1/2. Now measure the z-component of each individually.

What is the probability of finding $(m_1, m_2) = (+3/2, -1)$? What about $(m_1, m_2) = (+1/2, 0)$? What about $(m_1, m_2) = (-1/2, 1)$?

Clebsch-Gordan coefficients

A general solution to this problem is given by the Clebsch-Gordan coefficients:

The Clebsch-Gordan coefficients are just the basis expansion coefficients.

These are tabulated, and you can look them up.

Clebsch-Gordan tables

Returning to our example question:

$$C_{m_1 m_2 M}^{j_1 j_2 J} = \langle j_1 m_1 j_2 m_2 | JM \rangle$$

Use the Born rule to calculate the answers:

$$j_1 = \frac{3}{2}, j_2 = 1$$

$m=\frac{1}{2}$			
m_1, m_2 j	<u>5</u> 2	<u>3</u>	<u>1</u>
$\frac{3}{2}$, -1	$\sqrt{rac{1}{10}}$	$\sqrt{rac{2}{5}}$	$\sqrt{rac{1}{2}}$
<u>1</u> , 0	$\sqrt{rac{3}{5}}$	$\sqrt{rac{1}{15}}$	$-\sqrt{rac{1}{3}}$
- 1 , 1	$\sqrt{rac{3}{10}}$	$-\sqrt{\frac{8}{15}}$	$\sqrt{rac{1}{6}}$