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Time-dependent perturbation theory;
The interaction picture.



A quick recap
We derived the quantum Hamiltonian for a classical EM field:

And, together with gauge invariance, we derived two phenomena:
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Time-dependent perturbation theory
If we are interested in time dynamics of a system, we need more information 
from perturbation theory than what the time-independent case gives.

We allow our perturbing Hamiltonian to potentially depend explicitly on time 
and we make the following ansatz.

total Hamiltonian

initial state, 
expanded in unperturbed eigenbasis

Time dynamics, 
with c(t) containing the perturbing 
corrections to the bare evolution

The probability of being in the 
nth bare state at time t.



Using the Schrödinger equation
The Schrödinger equation tells us how the cn(t) evolve with time.

iℏ | ·ψ(t)⟩ = H |ψ(t)⟩ |ψ(t)⟩ = ∑
n

cn(t)e−iE(0)
n t/ℏ |E(0)

n ⟩Schrödinger eq. Ansatz state



Perturbation series
We have derived a set of coupled differential equations for determining the 
evolution equations of the new amplitudes.
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We now expand cn(t) as a perturbation series:

As with time-independent perturbation theory, we now equate terms at each 
order in λ to find self-consistent equations for the perturbative corrections.



0th order and initial conditions

We need boundary conditions, so assume we initialize as follows.

0th order equation:

initial state:

Collecting terms at 0th order, we find
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This implies:

Assume we start in an unperturbed eigenstate:



1st order conditions

1st order equation:

Collecting terms at 1st order, we find

iℏ( ·c(0)
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f + …) = ∑
n
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This can be integrated to obtain:



Schrödinger picture
We have been accustom to thinking of the state vector evolving in time:

|ψS(t)⟩ = US(t) |ψS(0)⟩

We will call this the “Schrödinger picture” and label states and operators 
considered in this picture by a subscript S. 

iℏ ·US(t) = HUS(t)

In the Schrödinger picture, time-evolution obeys:

US(t) = exp(−iHt/ℏ) (if H is time-independent.)

and expectation values (of time-independent operators) obey:

d
dt

⟨ψS(t) |OS |ψS(t)⟩ =
i
ℏ

⟨ψS(t) | [H, OS] |ψS(t)⟩



Heisenberg picture
In contrast to the Schrödinger picture, in the Heisenberg picture the operators 
evolve and the states remain fixed. 

Here we have defined:

Heisenberg operator time evolution obeys:



Interaction (Dirac) picture
The Schrödinger and Heisenberg pictures are “active” or respectively “passive” 
views of quantum evolution. The interaction picture combines features of both 
in a convenient way for time-dependent perturbation theory. Define:

Time evolution in the interaction picture proceeds as:



Operator evolution in the interaction picture

|ψI(t)⟩ = eiH0t/ℏ |ψS(t)⟩
We thus have:

Evolution of expected values of operators proceeds as:

Evolution of expected values of operators proceeds as:

This suggests defining:

iℏ | ·ψI(t)⟩ = eiH0t/ℏH1e−iH0t/ℏ |ψI(t)⟩



Unitary evolution operator

HI = eiH0t/ℏH1e−iH0t/ℏ

In the interaction picture, HI depends on time, complicating time evolution.
·OI = i

ℏ [H0, OI]

We can integrate the evolution equation as follows:

iℏ | ·ψI(t)⟩ = HI |ψI(t)⟩

To get a perturbative expression, we can iterate this:



Amplitude evolution
We can now derive the evolution equations for the cn(t) amplitudes.

Using the perturbative expansion for UI(t), we find:

This looks familiar! We can therefore see:


