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Rolling along a square path: The dynamics of biased balls
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A biased ball rolled and spun on a horizontal surface exhibits interesting dynamics. We investigate

the motion of a truncated billiard ball, via experiments, analytical methods, and numerical

solutions of the equations of motion for a biased sphere rolling without slipping. Solutions are

identified where the center of mass moves in a circular or a square path, and we investigate other

quasi-periodic motions of the ball. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000905

I. INTRODUCTION

Biased balls rolled and spun on a horizontal surface
exhibit interesting and sometimes curious, unexpected
dynamics. For example, a biased ball can roll along a circu-
lar path, but it can also roll along a square or triangular path.
The torque produced by an offset center of mass causes a
biased ball to depart from a straight line when rolling. A
familiar example is provided by a lawn bowl, which gener-
ally rolls in a leisurely arc, but may also wobble as it rolls.1–3

In general, the motion involves rotations about three axes: a
spin about the symmetry axis of the bowl; a slow precession
(the rotation of the symmetry axis about the vertical as the
ball curves); and a nutation (the wobble of the axis up and
down). The bowl rolls without slipping, and so the point of
contact with the ground is instantaneously at rest.

A second example of the motion of a biased rolling ball is
provided by hurricane balls, which consist of two bearing
balls joined together.4 When the balls are spun rapidly on a
surface, they quickly achieve a steady state in which one ball
is rolling without slipping, the center of mass is at rest, and
the second ball is lifted off the surface. In this case, the cen-
ter of mass of the system is the point at which the balls are
joined, and so it is at the edge of the lower, rolling ball. The
center of mass of the lower ball, which can be considered a
biased rolling ball, moves in a circle.

The dynamics of biased balls have previously also been
analysed theoretically and experimentally. Studies have
looked at tippe tops, spheroids,5 and a small ball connected
to a larger ball.6 In this paper, we will focus on a truncated
sphere: a sphere with a part removed by a taking a planar
slice through the sphere. The motion of a rolling truncated
sphere has previously been investigated theoretically, under
the restrictive assumption of zero spin about a vertical axis7

(a “rubber body” model). In this paper, we provide a more
general description of the motion of a rolling truncated
sphere.

The present investigation was motivated in part by some
interesting observations concerning the dynamics of a metal
ring spun about a vertical axis. Several authors have reported
a surprising effect, where the center of mass rotates initially
in a prograde sense about a remote vertical axis and then
changes direction to rotate in a retrograde sense before it
comes to a stop.8,9 The authors provided numerical solutions
but were not able to explain the effect in simple terms.

In the present paper, we investigate experimentally the
motion of a biased ball under conditions where the ball
rotates about its axis of symmetry and also rotates about a
vertical axis through its center of mass, G. Rotation about

the symmetry axis is generated as a result of rolling motion,
while an arbitrary rotation frequency about a vertical axis
can be imposed by spinning the ball in that manner, a tech-
nique commonly employed in ten-pin bowling.10,11 In
ten-pin bowling, the center of mass generally rotates at low
frequency about a remote vertical axis in a prograde sense,
with a large radius of curvature. That is, the direction of rota-
tion about the remote axis is in the same direction as rotation
about the vertical axis through G. In our case, a billiard ball
was biased by removing a portion of the ball, with the result
that the ball curved in a retrograde sense. That is, the direc-
tion of rotation about the remote axis was in the opposite
direction to that about the vertical axis through G. The radius
of curvature was relatively small since the ball was launched
at low speed.

A wide range of trajectories can be generated by varying
the spin about the vertical axis and also by varying the incli-
nation of the axis of symmetry. A representative sample of
trajectories is presented below, including the case that the
ball rolls along an almost square path. The trajectories were
calculated numerically and are compared with the experi-
mental results obtained with the truncated billiard ball. One
particular mode is omitted from discussion in this paper
since it has been described elsewhere and also because it
requires slipping.12 That is, if a truncated ball is spun at suffi-
ciently high speed, it can completely invert like a tippe top.

II. MODEL

Here, we present a model for a rolling axisymmetric
biased ball, following an approach used to describe a lawn
bowl.1,2 Figure 1 illustrates the ball geometry. A set of mov-
ing axes Gngf is chosen so that G is the center of mass of the
ball, g is aligned with the axis of symmetry of the ball, and
the axis n is always horizontal. In Fig. 1, the n-axis is
directed into the page. The axes Gngf are aligned with and
move with the ball, but are not fixed in the ball: The ball
rotates about the g-axis as it rolls. The ball has radius a, and
the center of mass is offset by a distance c from the center.
The position and orientation of the ball in a frame Oxyz fixed
in the rolling surface is then defined by the position (x, y, z)
of G, and the Euler angles h, v, and /, where h is the angle
between f and z, v is the angle between the x and n
directions, and / is an azimuthal angle around g, measured
from n.

From Fig. 1, we can see that the angular velocity x of the
ball is given by

x ¼ � _h n̂ þ _/ � _v sin h
� �

ĝ þ _v cos h f̂: (1)
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The axes Gngf coincide with the principal axes of the
ball, so the angular momentum of the ball is

L ¼ Axn n̂ þ Bxg ĝ þ Axf f̂;

¼ �A _h n̂ þ B _/ � _v sin h
� �

ĝ þ A _v cos h f̂; (2)

where B is the moment of inertia for rotation about the sym-
metry axis, and A is the second principal moment of inertia.

We can transform a vector with components in n, g, and f
to a vector with components in x, y, and z by multiplying by
the matrix

K ¼
cos v �cos h sin v �sin h sin v

sin v cos h cos v sin h cos v

0 �sin h cos h

0
B@

1
CA; (3)

so that, e.g., the vector Kx has components ðxx;xy;xzÞ,
where x ¼ ðxn;xg;xfÞ.

We assume that the ball rolls without slipping, which
implies

vþ Kx� rGP ¼ 0; (4)

where v ¼ ð _x; _y; _zÞ is the center of mass velocity and

rGP ¼ �cĝ � aẑ;

¼ c cos h sin v;�c cos h cos v;�aþ c sin hð Þ (5)

is the vector from the center of mass G to the point P in con-
tact with the surface.

Equation (4) is a kinematic relationship, which defines the
motion of the ball’s center of mass in terms of the Euler
angles. From Eqs. (1) and (3)–(5), it follows that

_x ¼ a _/ � c _v
� �

cos h cos v� a� c sin hð Þ _h sin v; (6)

_y ¼ a _/ � c _v
� �

cos h sin vþ a� c sin hð Þ _h cos v; (7)

_z ¼ �c cos h _h: (8)

The last equation can be directly integrated to give

z ¼ a� c sin h; (9)

using the condition z¼ a when h ¼ 0.
Again using the fact that the axes Gngf coincide with the

principal axes of the ball, the kinetic energy T is given by

T¼ 1

2
Ax2

nþ
1

2
Bx2

gþ
1

2
Ax2

fþ
1

2
M _x2þ _y2þ _z2
� �

; (10)

where M is the ball’s mass. Using Eqs. (1) and (6)–(8) leads to

T ¼ 1

2
A _h

2 þ _v2 cos2h
� �

þ 1

2
B _/ � _v sin h
� �2

þ 1

2
M a _/ � c _v
� �2

cos2hþ a2 � 2ac sin hþ c2ð Þ _h2
h i

:

(11)

Also, the potential energy of the ball is

V ¼ mg a� c sin hð Þ: (12)

The equations of motion may be obtained using the
Lagrangian method with the non-holonomic constraints
implied by the rolling conditions Eqs. (6)–(8). The details are
given in Appendix A. The results are

AþM a2 � 2ac sin hþ c2ð Þ½ � €h �Mac cos h _h
2

� B� Að Þsin hþMc a� c sin hð Þ
� �

cos h _v2

þ BþMa a� c sin hð Þ½ �cos h _/ _v �Mgc cos h ¼ 0;

(13)

AþMc2ð Þ cos2hþ B sin2h½ � €v � B sin hþMac cos2hð Þ €/

þ 2 B� A�Mc2ð Þsin hþMac
� �

cos h _h _v

� B�Mac sin hð Þcos h _h _/ ¼ 0; (14)

� B sin hþMac cos2hð Þ €v þ BþMa2 cos2hð Þ €/

� B� 2Mac sin hþMa2ð Þcos h _h _v

�Ma2 sin h cos h _h _/ ¼ 0: (15)

Equations (13)–(15) together with Eqs. (6)–(8) describe the
motion of the ball.

The force acting on the ball (for general motion) is
F ¼ Mð€x; €y; €zÞ, which may be calculated from Eqs. (6)–(8),

€x ¼ a€/ � c€v
� �

cos h cos v� a _/ � c _v
� �

� sin h cos v _h þ cos h sin v _v
� �

(16)

þccoshsinv _hð Þ2� a� csinhð Þ sinv€hþcosv _h _v
� �

;

(17)

€y ¼ a€/ � c€v
� �

cos h sin vþ a _/ � c _v
� �

� �sin h sin v _h þ cos h cos v _v
� �

(18)

�ccoshcosv _hð Þ2þ a�csinhð Þ cosv€h�sinv _h _v
� �

;

(19)

€z ¼ c½sin h _hð Þ2 � cos h €h�: (20)

Similarly, the net torque on the ball may be calculated as

Fig. 1. Geometry of the model for a rolling biased ball. We consider axes n,

g, and f through the center of mass G of the ball, which move with the ball.

The axis g is aligned with the symmetry axis of the ball, and the axis n,

which is directed into the page in the figure, remains horizontal.
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s ¼ rGP � Fxx̂ þ Fyŷ þ Nẑ
� �

; (21)

where N �Mg ¼ Fz. This gives

sx ¼ �m gþ €zð Þc cos h cos v� m€y �aþ c sin hð Þ; (22)

sy ¼ m€x �aþ c sin hð Þ � m gþ €zð Þc cos h sin v; (23)

sz ¼ mc cos h €y sin vþ €x cos vð Þ: (24)

III. STEADY-STATE SOLUTIONS

Steady-state solutions correspond to

€h ¼ €v ¼ €/ ¼ 0: (25)

If the ball rolls with a constant inclination of the axis to the
vertical ( _h ¼ 0), then we have

h ¼ hc; v ¼ Xct; / ¼ xct; (26)

where hc; Xc, and xc are constant and where we have
chosen v ¼ / ¼ 0 at time t¼ 0. The angular velocity Xc

represents the rate at which the moving frame Gngf
aligned with the ball rotates about a vertical axis through
the ball’s center of mass, and xc is the rate at which the ball
rotates about the g-axis as it rolls (see Fig. 1). With these
choices, Eqs. (14) and (15) become trivial, and Eq. (13)
reduces to

� B� Að Þsin hc þMc a� c sin hcð Þ
� �

X2
c

þ BþMa a� c sin hcð Þ½ �xc Xc �Mgc ¼ 0; (27)

assuming cos hc 6¼ 0. We can also rewrite this equation as

xc¼
Mgcþ B�Að ÞsinhcþMc a� csinhcð Þ

� �
X2

c

BþMa a� csinhcð Þ½ �Xc

: (28)

The rolling conditions [Eqs. (6)–(8)] imply

_x ¼ vc cos Xctð Þ; (29)

_y ¼ vc sin Xctð Þ; (30)

_z ¼ 0; (31)

where

vc ¼ axc � cXcð Þcos hc: (32)

Equations (29)–(31) may be integrated to give

x� x0 ¼ R sin Xctð Þ; (33)

y� y0 ¼ �R cos Xctð Þ; (34)

z ¼ a� c sin h; (35)

where x0 and y0 are the integration constants and

R ¼ vc=Xc: (36)

Equations (33)–(34) describe uniform circular motion in x
and y centered on (x0, y0) with radius R. The ball rolls in
a circle with a constant inclination of the spin axis to

the vertical, with the sense of rotation determined by the
sign of Xc.

The spin frequency xc may be eliminated between Eqs.
(27) and (36) to give

X2
c¼

Mgaccoshc

B Rþccoshcð ÞþMaR a�csinhcð Þ�a B�Að Þsinhc coshc

;

(37)

and then Eq. (36) implies

xc ¼
Xc

a

R

cos hc

þ c

� 	
: (38)

From Eqs. (22)–(24), the torque is given by sz ¼ 0 and

sx ¼ sc cos Xctð Þ; sy ¼ sc sin Xctð Þ; (39)

where

sc ¼ m cos hc �gcþ a� c sin hcð Þ axc � cXcð ÞXc

� �
:

(40)

The torque is constant in magnitude, horizontal, and parallel
or anti-parallel to the velocity of the ball. The torque induces
precessional motion, with the result that the center of mass
follows a circular path, the torque being equal to the rate of
change of angular momentum.

If the center of mass is at rest then R¼ 0. In that case, Eq.
(36) implies

axc ¼ cXc; (41)

which is the no-slip condition for a stationary center of mass.
In the game of lawn bowls, hc is usually zero, in which

case Eqs. (37) and (38) simplify to give ðRþ cÞXc ¼ axc

and

X2
c ¼

Mgac

B Rþ cð Þ þMa2R
: (42)

IV. NUMERICAL METHOD

For numerical solution, the equations of motion are writ-
ten in the form du=dt ¼ f , where

u ¼ x; y; h; v;/; _h; _v; _/
� �

(43)

and

f ¼ _x; _y; _h; _v; _/; €h; €v; €/
� �

: (44)

The equations are also non-dimensionalised by dividing lengths
by a, times by

ffiffiffiffiffiffiffiffi
a=g

p
, and moments of inertia by Ma2. In this

form, the equations are solved for the dependent variables u at
a set of time steps using fourth order Runge–Kutta.13 The
acceleration terms (the second derivatives of the Euler angles)
in f are evaluated at each timestep using Eqs. (13)–(15), includ-
ing solving a linear system of equations at each time step.
Further details are given in Appendix B.

The code implementing the numerical solution requires
initial conditions hðt ¼ 0Þ ¼ h0; _hðt ¼ 0Þ ¼ _h0; _vðt ¼ 0Þ
¼ _v0, and _/ðt ¼ 0Þ ¼ _/0. The initial values of the angles v
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and / can be assumed to be zero although a non-zero v can
be used to rotate the trajectory of the ball in the xy-plane.
The time step is chosen so that it is initially less than
2p= _h0; 2p= _v0, and 2p= _/0, in the case that the initial angular
velocities are non-zero. The code integrates for a chosen
total time, and it produces a visualisation of the motion of
the ball.

As a check on the numerical calculation, we evaluate the
total energy E ¼ T þ V using Eqs. (11) and (12) and ensure
that it is close to being conserved during the integration
time. The forces and torques acting on the ball are also
calculated, using Eqs. (16)–(19) and (22)–(24), respectively.

V. EXPERIMENTAL METHOD

The top 12 mm of a two inch (50.8 mm) diameter billiard
ball was removed to shift the center of mass by 2.9 mm from
the geometric center of the ball, as shown in Fig. 2. The
mass of the ball was thereby reduced to 98.4 g, giving
A ¼ 2:39� 10�5 kg m2 and B ¼ 2:69� 10�5 kg m2. A thin
wire probe was inserted in the center of the flat section so
that the center of mass could be located by extrapolating
the measured coordinates of the top and bottom of the probe.
When viewed from above, the apparent length of the probe
was used to calculate the angle of inclination of the probe from
the vertical, and the angular displacement of the probe in the
horizontal plane was used to calculate the precession frequency
X ¼ _v of the ball.

The ball was launched by hand at low speed on an accu-
rately horizontal and flat granite surface measuring 30 cm
� 30 cm, and was filmed from above at 300 fps with a Casio
EX-F1 camera mounted on a tripod. The video was analysed
with Tracker motion analysis software to measure the trajec-
tory and speed of the center of mass in the horizontal plane,
as well as the inclination angle, h, and the precession fre-
quency, X. We did not attempt to measure the spin frequency

x ¼ _/. Typical results are shown in four supplementary
videos.14

VI. EXPERIMENTAL AND NUMERICAL RESULTS

A. Lawn bowl mode

A relatively simple result was obtained by launching the
ball at low speed with the axis of symmetry approximately
horizontal and without imparting any deliberate rotation

about a vertical axis. That is, the usual method of launching
a ball in lawn bowls. The result, shown in Fig. 3, corresponds
to the steady-state circular motion solution described in
Sec. III. The center of mass follows a circular path of radius
R¼ 0.073 m, completing one orbit in time T¼ 1.95 s at an
average speed v¼ 0.235 m/s and at angular velocity jXj
¼ 2p=T ¼ 3:22 rad/s. The average angle of inclination, h,
was 24�, giving a theoretical precession frequency (from
Eq. (37)) of jXj ¼ 3:23 rad/s.

The circular motion solution provides a simple test for our
code. In Fig. 4, we show the numerical integration of the

equations of motion for initial values h0 ¼ 24�; _h0 ¼ 0;

_v0 ¼ �3:23 rad/s, and with _/0 � �10:16 rad/s, evaluated
using Eq. (28). The initial position is taken to be x¼ 0,
y ¼ �R, with R given in Eqs. (32) and (36) using Xc ¼ _v0.
As expected, these initial conditions produce a steady state
with the ball rolling clockwise in a circle centered on the ori-
gin, and moreover, reproduce the experimental results shown
in Fig. 3. Figure 4(a) shows the result of the numerical calcu-
lation. A visualisation of the solution, which animates the
rolling ball during the motion, is provided as supplementary
material.14 The red curve in Fig. 4(a) is the path of the center
of mass, the blue curve is the path of the point at the center
of the flat part of the truncated ball, and the black curve
corresponds to the path of the tip of the probe. Figure 4(b)
shows the components of the net force on the ball (upper)
and the components of the torque (lower). The static friction
force and the torque are both constant, horizontal vectors
which rotate with the ball, so their components show sine-
cosine variation. The friction force provides the centripetal
force for the circular motion of the center of mass, so it is
always radially inwards. The torque is in the direction of the
instantaneous velocity, as expected from Eqs. (39)–(40), and
causes the continuous change in the angular momentum
vector—which is directed radially outwards, for clockwise
rolling—needed for the ball to roll in a circle.

B. Approximately straight trajectories

If the ball in Fig. 3 is spun about a vertical axis when it is
launched in a horizontal direction, then one might expect

Fig. 2. Truncated billiard ball with probe.

Fig. 3. Lawn bowl mode result for the truncated billiard ball showing the tra-

jectories of the tip and base of the probe and the extrapolated coordinates of the

center of mass, G, in the horizontal plane. See Supplementary video 8853-3.
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that it will follow a relatively straight line path on average. If
the ball curves initially to the right then it will subsequently
curve to the left when the ball rotates to face the opposite
direction, as indicated in Fig. 5. That type of behaviour was
observed experimentally when the axis of symmetry was
horizontal, although the axis did not remain perfectly hori-
zontal throughout the motion. Instead, h increased and
decreased periodically, by about 10�, with the result that the
ball followed a curved path with a large radius of curvature.
A typical experimental result is shown in Fig. 6. In this case,
there are five precession cycles in 1.35 s, so the average
period is 0.27 s and the average precession frequency is X
¼ 2p=0:27 ¼ 23 rad/s. The angle of the spin axis was
observed to vary between about 5� below the horizontal, and
20� above. If the spin direction was reversed, the ball curved
in the opposite direction. In both cases, the ball curved in a
retrograde sense.

To reproduce the approximately straight-line motion
shown in Fig. 6 with the code, we chose the initial conditions
_v0 ¼ 23 rad/s, h0 ¼ �5�, and _h0 ¼ 0. The initial spin fre-
quency _/0 needs to be guessed. With the choice _/0 ¼ �3

rad/s we obtain the result shown as panel (a) in Fig. 7. We
have chosen v0 ¼ 190� to make the overall orientation
approximately match Fig. 6. The numerical solution has h
varying between �5� and about 25�. Panel (b) of Fig. 7
shows the components of the net force on the center of mass
of the ball, and the components of the torque about the center

Fig. 4. Numerical solution for the lawn bowl mode. Panel (a) shows the tra-

jectory (inner circle: center of mass; middle circle: center of flat section of

ball; outer circle: tip of probe), and panel (b) shows the time variation of the

net force and torque on the ball.

Fig. 5. Assumed path of the truncated ball when it is rotating about a vertical

axis, viewed from above.

Fig. 6. Approximately straight trajectory showing the paths of the tip and

base of the probe and the extrapolated coordinates of the center of mass, G,

in the horizontal plane. See Supplementary video 8899-1.

Fig. 7. Numerical solution for nearly straight-line motion. Panel (a) shows

the trajectory, and panel (b) shows the time variations of the net force and

torque on the ball.
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of mass. A basic question concerning the motion shown in
Fig. 6 is whether the ball is rolling without slipping.

The numerical solution can provide insight. Panel (b) of
Fig. 7 indicates that the frictional forces in the numerical
solution are less than about 0:05Mg in magnitude. This is
much smaller than the expected maximum static friction
force for the billiard ball on the granite surface, which sug-
gests that the ball is always rolling. Also, panel (b) of Fig. 7
shows that the torque vector is rotating in the x-y plane as the

ball precesses. The symmetry of the variation of the horizon-
tal torque accounts for the nearly linear motion of the ball.

C. Approximately circular trajectories

If the initial value of h is significantly less than 90�, say
about 40�, then the large radius of curvature trajectory in
Fig. 6 changes to a small radius of curvature trajectory, as
shown in Fig. 8 and in supplementary video 8855-1. Large

Fig. 8. Two different trajectories (a) and (d) showing the paths of the tip and base of the probe and the extrapolated coordinates of the center of mass, G, in the

horizontal plane. The measured variations of h and X for trajectory (a) are shown in (b) and (c). The corresponding graphs of h and X for trajectory (d) are

shown in (e) and (f).
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variations in h are observed during each precession cycle, as
well as large variations in X. The center of mass rotates in an
approximately circular path, in a retrograde sense. However,
the local radius of curvature of the path followed by G
changes during each precession cycle, in a manner similar to
that shown in Fig. 5, depending on whether the flat face of
the ball is facing away from or towards the center of the cir-
cular path.

To reproduce this motion with the code, we can choose
initial conditions based on the plots of h and X versus time
in Fig. 8. For example, to attempt to reproduce the case
shown in Figs. 8(a)–8(c), we choose h0 ¼ 20�, and _v0 ¼ 10
rad/s. After some numerical experimentation, we find that
_/0 ¼ �2:9 rad/s gives the motion shown in panel (a) of Fig.
9, for an integration time of 3.6 s. The time variation of _v
and h (as well as _h and _/) is shown in panel (b). There is a
reasonable match to the data shown in Fig. 8. For the case
shown in Figs. 8(d)–8(f), we choose h0 ¼ 40�, _h0 ¼ 0, and
_v0 ¼ 5 rad/s. Again, we need to guess the spin frequency,
and we find that _/0 ¼ �7:5 rad/s gives the motion shown
in panel (c) of Fig. 9, for an integration time of 2.95 s. The
variation of the angular speeds _v; _h, and _/, as well as of the
angle h is shown in panel (d) of Fig. 9. Once again there is
good correspondence with the data in Fig. 8.

Some insight into the approximately circular center-of-
mass motion shown in Fig. 9 follows from an inspection of
the torque. Figure 10 compares the variation of the torque in

the lawn bowl mode shown in Fig. 4(a) (top panel) with the
variation of the torque in the nearly circular case shown in
Fig. 9(c) (lower panel). The total time for each plot corre-
sponds to one period of the circular/approximately circular
motion. In the lawn bowls case, the torque is horizontal, in
the direction of motion, and constant in magnitude [Eqs. (39)
and (40)]. The torque causes the change in angular

Fig. 9. Numerical solutions with approximately circular trajectories. Panels (a) and (c) show the two trajectories, and panels (b) and (d) show the corresponding

time variations of the angular speeds and of h.

Fig. 10. Variation of torque with time in the lawn bowl mode shown in Fig.

4(a) (top panel) and in the nearly circular trajectory shown in Fig. 9(c)

(lower panel).
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momentum needed for the ball to roll in a circle. In the
nearly circular motion case, the average variation in the tor-
que has the same pattern, but superimposed on this average
variation are oscillations corresponding to the precession of
the rolling ball.

D. Low X trajectories: Rolling along a square

Even though the paths of the center of mass are approxi-
mately circular in Fig. 8, results at low X can have distinctly
non-circular paths, as demonstrated in Fig. 11. In particular,
Fig. 11(a) presents the unexpected result that, for certain ini-
tial choices of X and h, it is possible for the biased sphere to
roll along a nominally square path! During the motion h
varies from about 0� to about 90� during each precession
cycle, with the extreme value achieved at the corners of the
square. A supplementary video makes this clear. Figure
11(b) also shows that, for other initial conditions on the
motion, the trajectory of the center of mass can also be
approximately triangular. During these motions, the loops

followed by the tip of the probe can be relatively large [as
they are in Fig. 8(a)] or simple cusp points [as in Fig. 8(b)].

Numerical solutions which approximately match these
results are shown in Fig. 12. Although the precession fre-
quency is low on average over the motion, the spin frequen-
cies _v and _/ achieve large values at the corners of the
shapes, and the angle h changes rapidly at these locations.
The initial conditions producing these trajectories are given
in the caption to the figure.

VII. CONCLUSION

A biased ball that rolls without slipping on a horizontal
surface can do so in a wide variety of ways. The simplest
involves steady state motion in a circular path, where the
axis of symmetry remains approximately horizontal, corre-
sponding to a lawn bowl mode. The motion can be described
analytically and can be understood intuitively from the fact
that the rate of change of angular momentum is equal to the
torque acting about the center of mass.

Fig. 11. Trajectories in the horizontal plane, observed at relatively low values of X, which demonstrate rolling around a square, and rolling around a triangle.

Data points for the probe tip are shown at intervals of 0.04 s. See Supplementary video 9466-7.

Fig. 12. (a) Rolling around a square, and (b) rolling around a triangle. The initial conditions are: (a) h0 ¼ �5�, _h0 ¼ 0; _v0 ¼ 4:05 rad/s, and _/0 ¼ �3 rad/s;

(b) h0 ¼ �10�, _h0 ¼ 0; _v0 ¼ 2:3 rad/s, and _/0 ¼ �2:5 rad/s.
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If the lawn bowl mode is modified by imposing spin about
a vertical axis through the center of mass, then the result is
also intuitive. That is, the ball curves alternatively to the left
and then to the right due to the alternating torque. As a result,
the center of mass follows a path that is relatively straight,
but it curves slightly in a retrograde sense.

If the axis of symmetry is not horizontal, then motion of
the ball is more complex and so are the relevant equations of
motion. In general, the axis of symmetry oscillates up and
down in a vertical plane while simultaneously precessing
about a vertical axis through the center of mass. Furthermore,
the center of mass follows a path that is approximately circu-
lar if the average precession frequency is large, but which can
be approximately triangular or square or many-sided if the
average precession frequency is relatively low. The center of
mass rotates in a retrograde sense, opposite to the direction of
rotation of the precessing ball. The average precession fre-
quency is easily controlled experimentally, simply by spin-
ning the ball about a vertical axis at any desired speed.
Similarly, the initial angle of inclination of the axis of sym-
metry is easily controlled, but the subsequent angle is deter-
mined by the precession frequency and the rolling condition.

The ability of the ball to roll along a square path is a curi-
ous result, which should appeal to all students of physics.
More generally, the motion of a rolling biased ball presents a
wonderful topic for student projects—and in fact, this article
originated in a semester-long undergraduate project. On the
theory side, the description of the motion introduces students
to Euler angles, and the derivation of the equations of motion
using the Lagrangian approach (or directly using forces and
torques) is a problem that is challenging but accessible to
junior undergraduates. The experimental investigation of the
motion tests laboratory skills, has scope for creativity, and
allows students to directly connect the theory with the unex-
pected behaviour of the ball.
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APPENDIX A: DERIVATION OF THE EQUATIONS

OF MOTION

We use a Lagrangian approach to derive the equations of
motion, following Brearley.2 However, our derivation is
exact, whereas Brearley made approximations relevant for a
lawn bowl.

Equations (6)–(8) represent constraint relations for the
motion. Variations in the coordinates are related by

dx� a cos h cos v d/þ c cos h cos v dv

þ a� c sin hð Þsin v dh ¼ 0; (A1)

dy� a cos h sin vd/þ c cos h sin v dv

� a� c sin hð Þcos v dh ¼ 0; (A2)

dzþ c cos h dh ¼ 0; (A3)

which represent a set of constraints

X6

r¼1

Arjdqr ðj ¼ 1; 2; 3Þ; (A4)

where the qr denote the six coordinates x, y, z, h, v, and /.

The Lagrange equations may be written2,15 as

d

dt

@T

@ _qr

� 	
� @T

@qr
� Qr þ

X3

j¼1

kjArj ¼ 0;

where r ¼ x; y; z; h; v;/: (A5)

The term Qr denotes the generalised force corresponding to

coordinate r, and
P3

j¼1 kjArj represents the forces associated

with the constraints. The kj are Lagrange multipliers, and the
Arj are defined in Eq. (A4). The constraint forces do no
work: The only generalised force (which does work) is

Qh ¼ �
@V

@h
¼ Mg cos h: (A6)

The six Lagrange equations together with the three con-
straint equations represent nine equations in the nine
unknowns (the generalized coordinates plus the Lagrange
multipliers). The Lagrange equations are

M€x þ k1 ¼ 0; (A7)

M€y þ k2 ¼ 0; (A8)

M€z þ k3 ¼ 0; (A9)

A€h þA sinhcosh _v2þB _/� _v sinh
� �

cosh _v�Mgc cosh

þ a� c sinhð Þ k1 sinv� k2 cosvð Þ þ k3c cosh¼ 0;

(A10)

A cos2hþB sin2hð Þ€v�B sinh €/þ 2 B�Að Þsinh cosh _h _v

�B cosh _h _/þ k1 cosvþ k2 sinvð Þc cosh¼ 0; (A11)

�B sin €v þ B€/ � B cos h _h _v

� a cos h k1 cos vþ k2 sin vð Þ ¼ 0: (A12)

Eliminating k1, k2, and k3 using Eqs. (A1)–(A3) gives the
three equations describing the evolution of the Euler angles,
namely, Eqs. (13)–(15).

APPENDIX B: FORM OF THE EQUATIONS OF

MOTION FOR NUMERICAL SOLUTION

To solve the equations of motion numerically, we require
the angular accelerations €h; €v, and €/. The accelerations are
evaluated from the other dependent variables using Eqs.
(13)–(15) in the form

€h ¼ cos h

AþM a2 � 2ac sin hþ c2ð Þ

� Mac _h
2 þ B� Að Þsin hþMca0½ � _v2

n
� BþMaa0ð Þ _/ _v þMgc

o
; (B1)

where a0 ¼ a� c sin h, together with

Cg ¼ h; (B2)

where
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C¼ AþMc2ð Þcos2hþBsin2h �Bsinh�Maccos2h

�Bsinh�Maccos2h BþMa2 cos2h

 !
;

(B3)

g ¼
€v

€/;

 !
; (B4)

and

h ¼ cos h

� 2 B� A�Mc2ð Þsin hþMac½ � _h _v

þ B�Mac sin hð Þ _h _/

B� 2Mac sin hþMa2ð Þ _h _v

þMa2 sin h _h _/

0
BBBB@

1
CCCCA: (B5)

The linear system of Eqs. (B2)–(B5) is solved at each time step.
As mentioned in Sec. IV, all equations are implemented in code
in a non-dimensional form, with lengths divided by a, times
divided by

ffiffiffiffiffiffiffiffi
a=g

p
, and moments of inertia divided by Ma2.

When h ¼ 90�, the matrix system Eqs. (B2)–(B5) is singu-
lar. In this configuration, the axes g and z used to describe _/
and _v are parallel, so the chosen axes and angles cannot
instantaneously describe three-dimensional rotation. In prac-
tice, this is not a significant problem: All of the solutions
depicted in this article avoid h ¼ 90�.
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