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To Nola

“I find my zenith doth depend upon
A most auspicious star, whose influence
If I court not, but omit, my fortunes

Will ever after droop.”

The Tempest, 1, ii.
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Summary

In this thesis the emphasis is on the magnetohydrodynamical description of pro-
cesses associated with solar flares. A brief review of both the observational and
theoretical aspects of solar flare physics is presented in chapter 1, which provides
a context for the individual topics addressed.

In chapter 2, energy propagation into the site of energy release in a solar
flare is studied in detail, in the context of an existing model. The existing model
describes the unwinding of a twisted magnetic flux tube when a dissipative region
turns on somewhere along its length; the dissipative region is a simple model for
the primary site of energy release in a flare. It is shown that the evolution of
the system after the termination of energy release leads to a resupply of energy
to the coronal part of the flux tube, thereby providing a simple model for the
phenomenon of homologous flaring. It is also shown that the model can be
generalised to describe a time dependent, rather than impulsive, turning-on and
-off of energy release, and the generalisation of the model to describe the same
processes in a force-free flux tube is also investigated. Chapter 2 concludes with
a critical examination of a particular energy release mechanism, due to Zaitsev
and Stepanov (1991; 1992). It is shown that this mechanism does not constitute
a tenable flare model,

Chapter 3 of this thesis is concerned with the interpretation of several hard
and soft X-ray flare observations made with the Yohkoh spacecraft. A model is
presented to account for the loop-top hard X-ray sources found by Masuda (1994)
and the soft X-ray observations of Feldman ef al. (1994). Electrons accelerated by
the flare energy release mechanism near the apex of a coronal loop are assumed
to encounter an intermediate thick-thin target in an overdense loop-top region.
Some of the energised electrons are stopped at the loop-top, and some precipitate
to the footpoints of the loop. The model predicts theoretical photon spectra for
the loop-top dense region and the footpoints of the loop which qualitatively agree

with the observations of Masuda (1994). The model also accounts for the heating




of the dense loop-top region, and provides a natural explanation for Type A flare
observations.

In chapter 4, a simmple, two-dimensional model is presented to describe how an
externally imposed current closes as a function of time beneath the photosphere.
The model shows that currents close in a given layer of the subphotosphere only
during an Alfvén propagation time of that layer. The implication is that currents
observed at the solar photosphere close along field lines beneath the photosphere,
a conclusion inconsistent with the boundary condition of line-tying, often imposed
to describe the behaviour of plasma and fields at the photospheric boundary. The
implications of this conclusion for the dynamics of coronal magnetic structures
are then investigated. A simple model for the shearing of a magnetic arcade is
presented, and it is shown that if one side of the arcade is driven continuously, the
other row of footpoints is set into motion as well, with a timescale determined by
the transfer of momentum between footpoints. The role of the subphotosphere in
this process is investigated, and it is shown that if a finite layer of subphotosphere
at one footpoint of an arcade is initially set into motion, the propagation of
Alfvénic fronts into the subphotosphere at that footpoint effectively brakes the
driving motion.

Chapter 5 presents a circuit model for Alfvén wave propagation in a stratified
atmosphere. The model extends the analysis of Scheurwater and Kuperus (1988)
to describe vertically propagating Alfvén waves in an atmosphere with arbitrary
density and conductivity profiles. By way of example, the model is applied to

waves in an infinitely conducting, exponential atmosphere.
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Chapter 1

Solar flare physics - an overview

1.1 Introduction

Solar flares are events in which energy is explosively released in the solar atmo-
sphere. Typically the energy release is 1022 — 102° J in 102 — 103 s, making solar
flares the most energetic events in the solar system. The motivation to under-
stand flares has been driven in part by the practical consideration that large solar
flares have associated terrestrial effects, e.g. interruptions to radio communica-
tions, although it has recently been argued (Gosling, 1993; cf. Hudson et af. 1994
however) that the principal culprits in this respect are the related solar phenom-
ena, coronal mass ejections (CMEs). Solar flares produce radiation ranging from
radio frequencies to extremely energetic gamma rays. Flares have long been ob-
served as He events at the chromosphere, but in recent years the focus has been
on the information provided by solar flare hard X-ray emission. The Japanese
Institute of Space and Astronomical Science satellite Yohkoh, launched in 1991,
has provided the most detailed hard and soft X-ray observations to date.
Despite decades of intensive theoretical and observational work, the funda-
mental question of solar flare physics — the mechanism of energy release — remains
unresolved. The only general agreement is that the source of the energy must be
the magnetic fields above the active regions in which flares occur. A wealth of
indirect evidence suggests that the site of energy release is in the corona (Svestka,
1976), and X-ray observations imply that a substantial fraction of the impulsive
energy release goes into producing 10 — 100keV electrons (Dennis, 1988). The
interaction of these electrons with the ambient solar plasma produces the variety

of observed flare emission. However, the mechanism of electron acceleration in



a flare is not understood, and there is no accepted theory for how the energy in
coronal magnetic fields appears as energetic particles (Melrose, 1990).

This chapter presents a brief overview of solar flare physics, and provides a
context for the specific topics addressed in this thesis. More comprehensive sur-
veys of the field may be found in the literature (e.g. Svestka, 1976; Brown and
Smith, 1980; Melrose, 1993). In §1.2 below, solar flare observations are briefly
reviewed, with the emphasis on hard and soft X-ray emission and observations
of photospheric magnetic fields. In §1.3 the present state of theoretical under-
standing of solar flares is surveyed, with the emphasis on topics discussed in this

thesis,

1.2 Flare observations

There is an enormous body of literature devoted to flare observations, and no
existing flare model can account for all of the details, The following is a brief
summary of some important observations,

Flares are observed to occur in active regions, i.e. sites containing one or more
bipolar regions, The most active of active regions are those with a complicated,
rather than simple bipolar, magnetic topology. In particular, active regions with a
‘6-configuration’ (i.e. having both polarities occuring within a common penumbra)
are usually sites of repeated flaring (Svestka, 1976; Zirin, 1988), although only if
the polarities comprising the é-configuration are magnetically connected (Rust et
al. 1994). Flares may re-occur periodically in the same part of an active region;
these events are known as homologous flares (Svestka, 1976).

Flare observations began with the sighting, in 1859, of a brightening in white
light on the solar disk. White-light flares visible to the naked eye are rare events,
however. Until about the 1970s, flares were studied almost exclusively as chro-
mospheric brightenings in Hey, and the name ‘flare’ derives from their appearance
in He. The area of brightening is proportional to the power released in the flare,
and a detailed classification scheme is applied to describe flares as they appear
in Ha. The impulsive phase of flaring is also characterised by the production
of hard X-rays (see below), soft X-rays (due to > 107 K plasma appearing in
the corona), type III radio bursts (due to electron beams propagating outward
through the corona), spike radio bursts (see below), y-ray lines (produced by the

prompt acceleration of > 40 Mev ions), and a +y-ray continuum {attributed to




relativistic electrons).

Flares have been classified by their geometry in Ha into the following two
classes. Two-ribbon flares are observed on the solar disc as two extended, sepa-
rating bands of Ha emission running parallel to the magnetic neutral line of an
active region, which is is marked by a filament, or prominence (Svestka, 1976).
Compact flares are indeed more compact, may occur well away from the neutral
line of a given region, and are not necessarily associated with a filament (Moore
el al. 1980). Two-ribbon flares are associated with a magnetic arcade geome-
try, whereas compact flares are associated with individual magnetic loops. The
majority of flares and sub-flares are compact, whereas almost all major (i.e. very
energetic) flares are two-ribbon events. The impulsive phase of large (two-ribbon)
flares is often accompanied by a CME, but the relationship between flares and

CMEs is not one of simple causality (e.g. Hudson et al. 1994).

1.2.1 Solar flare X-ray emission

Even the smallest flares observed in He produce hard X-ray emission which is
now considered the basic signature of impulsive flaring. The onset of hard X-ray
emission contains information about the earliest possible time after the flare en-
ergy release (with the possible exception of spike radio bursts, described below).
In practice, however, it is difficult to extract reliable information about the ener-
getic electron population responsible for the X-rays (and about plasma conditions
at the source) from the observed emission.

Solar flare hard X-ray emission is attributed to electron-ion bremsstrahlung,
either thermal or non-thermal. Thermal bremsstrahlung is the result of electron-
ion collisions in a hot plasma, whereas non-thermal bremsstrahlung is the result
of an energetic electron beam interacting with ambient plasma. A simple non-
thermal model for impulsive solar flare X-ray emission is the thick-target model
(Brown, 1971). In this model, a beam of electrons (with a power law distribution
of energy, > 20keV, say) is produced in the corona by the flare energy release
mechanism and precipitates to the chromosphere where it is completely stopped.
Thick-target emission naturally produces a power law photon spectrum, charac-
terised by spectral index, v, which is qualitatively consistent with spectral obser-
vations of solar flares. Typically the (early) spectra of impulsive flares are power
laws over the 10 — 100 keV range, with a thermal contribution at lower energies.

Figure 1.1 shows a typical spectrum, Observations do not, however, conclusively
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Figure 1.1: A typical X-ray spectrum from a flare, showing the transition
from thermal emission at low energies (< 10keV) to power-law hard X-ray
emission. FLM and HXM refer to the instruments used in the respective
observations. (From Tanaka, 1986.)

rule out thermal models (e.g. Brown et al. 1979), since a non-isothermal source
at 10 K could also produce the observed power law emission.

Solar flare soft X-ray emission is unambiguously attributed to thermal bremss-
trahlung from plasma at a temperature T > 107 K. The origin of the soft X-ray
emitting plasma is, however, disputed. A popular model is the ‘chromospheric
evaporation’ picture, in which the soft X-ray plasma is dense chromospheric ma-
terial, ablated or evaporated into the corona by the deposition of energy at the
chromosphere by precipitating electrons (Doschek ef al. 1990).

Solar flare hard X-ray observations, interpreted in terms of the thick-target
model, imply that 10%° —10%¢ energetic electrons (> 20 keV) precipitate per second
in a typical flare. The inferred flux of electrons is very large because of the low
efficiency of thick-target bremsstrahlung. Such a flux would evacuate the clectrons
out of a typical coronal volume in minutes, but theoretical studies suggest that a
return current of electrons is established (van den Oord, 1990). The high flux of
electrons also implies that a substantial fraction of the total flare energy goes into
energising electrons, although the actual fraction is sensitively dependent on the

lower cut-off to the electron distribution, wlich is not well constrained (Dennis,



1988).

An X-ray classification scheme for flares was proposed following the Solar
Maximum Mission satellite observations (Dennis, 1988):

Type A, or hot thermal flares: Characterised by a gradual rise and fall of hard
X-ray; spectrum well fitted by thermal bremsstrahlung with T~ 3 — 4 x 107 K;
very steep spectra above 40keV with an index v > 7; spatially compact.

Type B, or impulsive flares: Impulsive, spiky hard X-ray with a variability of
seconds; soft-hard-soft spectral evolution.

Type C, or gradual-hard flares: Gradually varying hard X-ray emission over >
30 min; spectrum above 50 keV hardens from v > 5 to v < 2,

The vast majority of flares are of Type B; a few percent belong to the other
two classes, although a given flare may show characteristics of more than one
type. It is also worth noting that Lin et al. (1981) studied the spectral evolution
of an impulsive (Type B) flare and showed the development, from late in the
impulsive phase, of a thermal component at 7' & 3 x 107 K which dominates the
spectrum below about 50keV.

The Yohkoh satellite, launched in 1991, has provided the most detailed soft
and hard X-ray images of solar flares to date (Hudson, 1994; Kosugi, 1994).
Chapter 3 of this thesis is concerned with the interpretation of a number of hard
and soft X-ray observations made with Yohkoh. The model developed in chapter 3
also challenges the validity of chromospheric evaporation models.

High time resolution Lhard X-ray observations show the existence of rapid fluc-
tuations in flare X-ray emission (with a timescale of seconds), and the fluctuations
are thought to be to be composed of ‘elementary flare bursts’, or EFBs (Sturrock,
1986). More fundamental, sub-EFB structure (= 100ms) has recently been re-
ported (Brown et al. 1994). The finest structure is observed in radio spike bursts
(Benz, 1985; 1986). An individual flare may produce as many as 10* spikes, each
with a duration of about 50 ms. Benz (1985; 1986) interpreted these events as
the signature of the primary acceleration of electrons in small (200 km) regions
of energy release, or ‘microflares’. Each microflare must produce 10! J in 50 ms.
A comparison of millisecond radio spikes with hard X-ray emission (Aschiwanden
and Gudel, 1992) demonstrated that the radio bursts correlate with, but occur
2 — 5s after, the hard X-ray. This result complicates the simple interpretation of

Benz,




1.2.2 Currents at the photosphere

Flares occur in active regions where the magnetic field is strongly sheared across
the neutral line (Moore et al. 1987; Machado et al. 1988), implying the presence
of large currents. The three-dimensional magnetic field of the active region at the
photosphere can be determined by the three Zeeman components, and hence the
line of sight current can be calculated from Ampere’s law applied to the transverse
components of magnetic field (e.g. Moreton and Severny, 1968; Hagyard, 1988;
Canfield et al. 1993; de La Beaujardiere ef of. 1993; Leka ef al. 1993). The maps
of magnetic field obtained in this way are known as vector magnetograms. Vector
magnetograms confirm that flares correlate with regions where large currents flow
through the photosphere (Krall ef al. 1982; Ding et af. 1987; Lin and Gauzauskas,
1987; Romanov and Tsap, 1990). Typically the currents are observed to flow
out of the photosphere on one side of the neutral line of an active region, and
back into the photosphere on the other. Figure 1.2 shows a vector magnetogram
derived for a particular active region. The questions of how these currents are
generated, and how they relate to energy stored (and released) in solar flares,
remain incompletely answered. A related problem (addressed in chapter 4 of this
thesis) is the question of where the observed currents close. As explained below,

this problem is relevant to a class of models for energy storage prior to a flare.

1.3 Flare theories

In this section, a brief overview is presented of some of the outstanding theoret-
ical problems in solar flare physics. No attempt is made to provide a complete
summary of individual flare models.

Solar flares theories divide into those based on the magnetic viewpoint, and
those based on the electric current viewpoint (Melrose, 1993). Models based on
the electric current viewpoint are also referred to as civcuit models. It shonld of
course be irrelevant whether a theoretical description of a flare follows the evolu-
tion of magnetic fields or the currents associated with those fields, but in practice
the two perspectives are irreconcilable because of specific assumptions made in
the respective models, An example of the magnetic viewpoint is the ‘emerging
flux’ flare model due to Heyvaerts et al. (1977). The prototype flare model in
the circuit viewpoint is the Alfvén and Carlqvist (1967), ‘current interruption’

model,
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Figure 1.2: The vertical current density derived for an active region by
Ding et al. (1987). The solid (dashed) contours represent current flowing
out of (into) the photosphere, and the heavy solid line follows the magnetic
neutral line of the active region.

The distinction between the electric current and magnetic viewpoints is ev-
ident in the respective approaches to the source of flare energy, the storage of
flare energy, the propagation of energy into the energy release site, and most

importantly, the mechanism of energy release.

1.3.1 Energy release mechanisms

In the electric current viewpoint, energy release in a flare is attributed to the
local appearance of a resistivity, 7, associated with a field-aligned current density
J in a coronal magnetic loop. Integrating nJ/? over the energy release site gives
the power, RI?, associated with the flare, where R is a resistance assigned to the
flaring loop. Classical estimates of R, however, do not adequately account for
the power associated with even modest flares, and it is necessary to appeal to
some form of anomalous resistivity (Melrose and McClymont, 1987). Chapter 2
of this thesis includes a critical examination of the specific mechanism of Zaitsev
and Stepanov (1991; 1992) for producing enhanced resistance in a flaring coronal
loop. More generally, the natural choice for providing anomalous resistivity in a
current-carrying, flaring coronal loop is a current-driven instability.

In the magnetic viewpoint, the energy released in a flare is attributed to the




magnetic reconnection (or annihilation) of coronal magnetic fields, However, the
high classical conductivity of the coronal plasma implies that field lines are frozen
into the plasma and so precludes a change in magnetic topology. The resolution
of this problem (cf. the appeal to anomalous resistivity in the electric current
viewpoint) is to invoke reconnection at specific sites in the magnetic field (viz.
neutral lines, or X-points) where the frozen-in condition is locally broken. Theo-
retical descriptions of reconnection are generally local, two-dimensional models of
the fluid behaviour around the neutral point, which is co-spatial with one or more
current sheets (e.g. Vasyliunas, 1975; Priest, 1982). The magnetic field is antipar-
allel either side of a current sheet, and perpendicular to the current in the sheet.
This is in contrast to the electric current picture, where the current associated
with dissipation is field-aligned (Spicer and Brown, 1980). Flare models adopting
the magnetic viewpoint are generally two-dimensional, and follow the procedure
of identifying the location of an X-point or current sheet in a two-dimensional
model of the coronal magnetic field above an active region, and attributing the
flare energy release to that site. Recently, the three-dimensional magnetic topol-
ogy above an active region has been considered (Priest, 1992). The X-point is
replaced by a separator, a curve defined by the intersection of two separatri-
ces (surfaces dividing magnetically disjoint regions). Although three-dimensional
theoretical models of magnetic reconnection are still an active area of research
(Priest and Forbes, 1989; Lau and Finn, 1990; Hesse, 1991), energy release is

expected to be associated with a current along a separator.

1.3.2 Sources of magnetic free energy

As mentioned above, another distinction between the electric current and mag-
netic viewpoints is the identification of the source of the magnetic energy released
in a flare (McClymont and Fisher, 1989). In electric current based models, the
field-aligned currents involved are identified with those inferred at the photo-
sphere from vector magnetograms. These currents are generally attributed to
the solar dynamo (Hudson, 1987). In the magnetic viewpoint, the source of flare
energy is generally assumed to be the stressing of coronal magnetic fields by pho-
tospheric velocity fields, or by emerging fiux; the so called coronal storage models.
For example, a wide body of literature attributes the build-up of energy in a two-
ribbon flare to the gradual shearing of a coronal magnetic arcade by incompatible

photospheric flows at the two rows of footpoints of the arcade (e.g. Low, 1977).




Two arguments against such a mechanism for flare energy storage are mentioned
here. The first is that the current patterns inferred from vector magnetograms
are inconsistent with those expected if shearing motions are the generators of the
relevant currents (Melrose, 1991}. A contrary opinion was, however, presented
by Wilkinson et af. (1992). Another argument against models for the storage of
energy in a coronal magnetic structure due to photospheric shearing is that the
models presented implicitly impose unphysical boundary conditions on currents
at the photosphere. Models for the shearing of arcades typically invoke the ‘line-
tying’ boundary condition on fields at the photosphere. As argued in chapter 4
of this thesis, line-tying implicitly requires that currents close across field lines in
the photospheric boundary. Chapter 4 presents an investigation of current closure
in the subphotosphere and then reconsiders the shearing of a coronal arcade.

It is a general feature of models based on the magnetic viewpoint that the
assoclated currents are incompatible with, or more generally not related to, those
inferred from vector magnetogram data. The current sheets of interest in mag-
netic reconnection are not expected to be observable (Brown ef al. 1994), A recent
attempt to relate the magnetic viewpoint and vector magnetogram data involved
the calculation of the magnetic connectivity of an active region from the extrap-
olation of the observed photospheric field into the corona (Van Driel-Gesztelyi ef
al. 1994}, In particular, the intersections of the separatrices and separators with
the photosphere were calculated and compared with the inferred currents. Brown
ef al. (1994) concluded that the results support the idea that the energy released
in a flare is that stored in field-aligned currents in bipoles, rather than associated

with currents along the calculated separators.

1.3.3 Energy propagation into the flare site

Models based on the magnetic and electric current viewpoints also differ funda-
mentally in their approach to energy propagation in a flare. Due to the emphasis
on a local description in models based on the magnetic viewpoint, the question
of global energy propagation into the site of energy release in a flare is generally
neglected, This becomes relevant if, for example, magnetic energy stored every-
where in a flaring loop is supposed to supply energy release at a specific location
in the loop. Then the energy propagation to the site of release must be predomi-
nantly field-aligned. In the local description of the magnetic viewpoint, however,

the Poynting flux of energy to the dissipative region is perpendicular to the field.




The need to reconcile these differences motivated the model for energy transport
in a solar flare of Melrose (1992). In chapter 2 of this thesis, this theoretical
description of energy transport is re-investigated and extended.

Circuit models of solar flares naturally provide a global description of the
energetics of a flare, but often omit some of the relevant plasma physics in their
‘lumped parameter’ approach. In particular, the propagation of energy in a flaring
loop is generally neglected because the simple circuits invoked do not describe
the propagation of Alfvén waves, The model developed in chapter 2 of this thesis
provides a detailed magnetohydrodynamic description of energy propagation into
the site of energy release in a flare, and it is shown that the long term behaviour
of the model can be predicted by a simple circuit analogy. In addition, chapter 5
of this thesis extends the circuit description of Alfvén wave propagation due
to Scheurwater and Kuperus (1988) to describe Alfvén wave propagation in a

stratified atmosphere.

1.3.4 Specific problems with the viewpoints

The discussion above is sufficient to show that there is no satisfactory flare model,
from either the magnetic, or the electric current viewpoint. Furthermore, it is
not clear how to produce a complementary model, i.e. a model which incorpo-
rates both aspects. The most serious shortcomings of each viewpoint may be

summarised as follows:

1. Neither approach resolves the details of energy release, In the magnetic
viewpoint, the problem is that the existence of explosive reconnection is still
a matter of theoretical speculation (Akasofu, 1984; 1994), despite decades
of intensive research, In the electric current viewpoint, the central problem

remains the identification of the relevant current instability.

2. Neither viewpoint naturally accounts for the acceleration of > 20 keV elec-
trons, at a rate of 10°° — 10°%s~!, as inferred from hard X-ray observations

(Melrose, 1990).

3. Energetics arguments imply a fragmentation of energy release (independent
of the specific model, or viewpoint) and so it is necessary to account for

the production and interaction of many reconnection regions, or sites of
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anomalous resistivity (Sturrock, 1986; Melrose, 1993). As discussed above,

EFBs and spike radio bursts also point to a fragmentation of energy release.

4. Models adopting the magnetic viewpoint fail to associate the currents in-
volved in energy release (the current sheets) with the currents inferred at

the photosphere from vector magnetograms.

5. Current viewpoint-hased models are generally circuit models and so omit
some of the relevant plasma physics in favour of a lumped parameter de-

scription {Melrose, 1993).

1.4 Conclusions

Solar flares are energetic events in the solar corona, involving the explosive release
of energy stored in stressed coronal magnetic fields. Despite decades of theoretical
and observational work, the details of the mechanism of energy release in flares,
as well as the storage of energy prior to release and the ultimate source of that
energy, remain incompletely understood.

Theoretical models of flares are based on either the magnetic viewpoint, or the
electric current viewpoint. No individual model can account, even qualitatively,
for the bulk of flare observations. Dramatic improvements in the resolution of
observations (e.g. from the Yolhkoh spacecraft, and its successor, Solar B) may
resolve some of the outstanding questions, but substantial theoretical progress
1s also required. In particular, the reconciliation of the differences between the
magnetic and electric current viewpoints will be a long overdue first step.

This thesis is concerned with several topics in solar flare physics, including
the interpretation of solar flare hard and soft X-ray emission (as observed with
the Yohkoh satellite), the theoretical description of energy propagation in a solar
flare, and the closure of currents observed at the photosphere {(and associated

with flares) below the photosphere.
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Chapter 2

Energy propagation into a flare

energy release site

Abstract: Several refinements of an existing model for energy propagation into the
primary energy release site in a solar flare (Melrose, 1992) are presented. The existing
model describes the unwinding of a twisted magnetic flux tube when a dissipative region
turns on somewhere along its length. The dissipative region is a simple model for the
primary site of energy release in a flare. The unwinding of the flux tube, and the flux
of energy into the dissipative region is effected by Alfvénic {ronts that propagate away
from the dissipative region. The evolution of the system after the flare energy release
ends is considered, as well as the generalisation of the model to describe time-dependent
(rather than impulsive) turning-on and -off of energy release, and the changes necessary
to describe the same processes in a force-free coronal flux tube.

A critical discussion is also presented of the flare energy release mechanism presented

by Zaitsev and Stepanov (1991; 1992).
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2.1 Introduction

A solar flare involves the release of magnetic energy from a current-carrying, or
equivalently, twisted coronal magnetic loop. The primary energy release site is
assumed here to be located near the apex of the loop. If energy stored globally
(i.e. everywhere in the loop) is continuously released locally (near the apex of
the loop), a mechanism is required for energy propagation into the energy release
site. That propagation must be predominantly field-aligned, as distant regions of
the loop supply energy to a dissipative process occurring at its apex.

Most models for solar flares invoke magnetic reconnection as the energy release
mechanism. In the standard, X-type neutral point description of reconnection,
the energy propagation into the dissipative region occurs perpendicular to the
magnetic field. In any realistic flare model based on reconnection, this local
description must be reconciled with the global requirement that the mean energy

flow into the flare site is field-aligned.

2.1.1 The existing model

These considerations motivated an existing model for field-aligned energy prop-
agation in a flare (Melrose, 1992). In Melrose’s model, the energy release site is
represented by a dissipative region in a cylindrical flux tube carrying a current
I. The power release in the flare (typically 102'-1022 W for a large flare) may be
equated to I?R,, to define a characteristic resistance R, for the dissipation, The
dissipative region is also referred to here as the resistive region.

The mechanism for dissipation in the resistive region is not addressed directly
in Melrose’s model. The dissipation mechanism in solar flares is not well under-
stood and R, is introduced only as a simple way of relating the dissipation to
the current /. This step is motivated by observational evidence that flare regions
correlate with regions of high current (7 2 16'? A) flowing into the corona (More-
ton and Severny, 1968; Krall ef al. 1982; Ding ef al. 1987; Lin and Gaizauskas,
1987; Hagyard, 1988; Romanov and Tsap, 1990; Canfield et al. 1993; Leka et al.
1993; de La Beaujardiere et al. 1993). The failure of the existing model to de-
scribe the microphysics of the resistive region is not addressed here, beyond a few
comments. It has been widely recognised that the classical (Spitzer) resistivity of
coronal plasma is insufficient by many orders of magnitude to account, by Ohmic

dissipation, for the power release of even a modest flare (Melrose and McClymont,
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1987). Specifically, the (classical, Spitzer) coronal resistance is of order 10712
107! ), whereas the estimates of power release and current for a flaring coronal
loop quoted above imply R, = 1071072, 1t is necessary to appeal to some
form of anomalous resistivity to account for this dramatic increase in resistance.
The existing model is biased in favour of a central dissipative region consisting
of field-aligned double layers. Raadu (1989) and recently Volwerk (1993) con-
sidered an analogous model in which the dissipative region consists of a single,
macroscopic double layer. Energetics arguments (Melrose, 1990) imply that the
flare energy release must be a fragmented process and so it is necessary to appeal
to a filamented energy release region involving many double layers (I{han, 1989)
rather than a single, macroscopic double layer.

Recently, Zaitsev and Stepanov (1991; 1992) presented a model to account for
the requisite eight to ten orders of magnitude increase in the resistance of a flaring
coronal loop. A prominence, or filament overlying a coronal loop is supposed to
intrude into the loop via an instability, thereby introducing dense plasma and non-
steady state conditions near the loop apex, and providing the trigger for a flare.
Zaitsev and Stepanov argued that the dense neutral gas and non-steady state
conditions account for the increased resistance. Their mechanism is critically
examined in §2.5 of this chapter and is found to be based on the erroneous
assumption of non force-free conditions in the coronal loop before the intrusion
of the filament.

In the existing model for energy propagation into a solar flare, the resistive
region is assumed to turn on impulsively at a time ¢ = 0 in the cylindrical flux
tube, modelling the impulsive onset of a flare. The flux tube is threaded by
a uniform axial magnetic field with magnitude By. The ends of the flux tube
represent the photospheric boundaries and the resistive region is represented by
a cylindrical disk at the midpoint of the flux tube. The system is described in
terms of cylindrical coordinates r, ¢,z with origin in the resistive region. The
radius of the flux tube is ro and its length is {. Alfvénic fronts are launched
along field lines away from the central dissipative disk in response to the sudden
appearance of the cross field potential implied by R.. Goertz and Boswell (1979)
provide a kinetic theory description of this process in the context of a model
for magnetospliere-ionosphere coupling. The Alfvénic fronts carry behind them
a new current density but the same current still flows in the loop, to satisfy

the requirement that the current itself only change over the longer, inductive

14




timescale of the current loop circuit (Melrose, 1993). Effectively, a fraction of the
current, / is deflected to the surface of the flux tube in the plane of the advancing
front and thereby avoids flowing through .. For simplicity it is assumed that
a purely axial current with uniform density Jp flows in the flux tube initially,
and is replaced by a purely axial current with constant current density J, with
the passage of the front. The azimuthal magnetic field of the flux tube changes
discontinuously with the passage of the front according to Ampere’s law, so that
the propagating Alfvénic fronts effect an ‘unwinding’ of the flux tube. Note that
these simplifying assumptions about the current density imply that the flux tube
is not a force-free structure (see §2.4).

Behind the fronts, a radial electric field is established by the time rate of
change of By. This electric field causes a bulk rotation vy of the plasma behind
the front according to E = —v x B. Fronts propagate outwards in both directions
(z > 0 and z < 0) from the resistive region, and the established (radial) electric
field is odd in z, i.e. £.(—2z) = —E.(z). Consequently, the plasma in the filux tube
counter-rotates either side of z = 0. Slippage of field lines continuously occurs
at the resistive region; elsewhere the field lines are frozen-in to the plasma. This
slippage represents a form of generalised magnetic reconnection according to the
definition of Hesse and Schindler (1988a; 1988b; Schindler ef af. 1991; Hesse,
1991), although the geometry of the process is not that of the familiar X-type
neutral point model (Sonnerup et al. 1990).

At the propagating fronts, energy stored in the azimuthal component of the
magnetic field of the loop is partially converted into a Poynting flux (to supply
the resistive region) and partially into the bulk rotation of the plasma within the

tube, Equating the power in the Poynting flux to that dissipated at z = 0 gives

il' = RAI 1 (21)
Jo Ra+ R
where K41 = pova; is the Alfvénic impedance of the flux tube, with vy =

BO/(,ugpl)% the coronal Alfvén speed, where p) is the coronal density. Equa-
tion (2.1) implies that the power dissipated in the central resistive region is given
by

R 2
Piigs = R, I% = (ﬁ) R.IZ, (2.2)

where I; = wr2J; is the total current inside radius ro ahead of (i = 0) and behind
(¢ = 1) the advancing front. This expression shows that a maximum initial power

release occurs when R, = Ry, the case of impedance matching.
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When the Alfvénic fronts reach the photosphere (z = {/2), they are partially
reflected and partially transmitted. A uniform Alfvén speed is assumed above
the photosphere, so that the propagation time to the photosphere is 74 = {/2v,4,.
This assumption means that we are dealing with a simplified model of wave
propagation in the solar atmosphere; a more sophisticated model would require
an accurate description of the decrease in Alfvén speed through the corona and
chromosphere, where reflection of the front may occur. In this model, reflection
occurs at a step in density attributed to the photosphere, although it may be
thought of as representing the transition region (separating the corona and chro-
mosphere), where a steep increase in density occurs (e.g. Lang, 1992). Melrose
considered two boundary conditions at z = {/2. In the first, the subphotosphere
is treated as a resistive region through which the front cannot propagate. This
boundary condition is often applied to Alfvén waves incident on the jonosphere of
the earth from the magnetosphere, since the ionosphere is a thin layer bounded
below by the neutral atmosphere, in which Alfvén waves cannot propagate (e.g.
Scholer, 1970; Goertz and Boswell, 1979). The relevance of this boundary condi-
tion in the solar context is investigated in chapter 4 of this thesis. The second,
more realistic boundary condition (which is adopted here) treats the subphoto-
sphere as a uniform region with a lower Alfvén speed v,2. Assuming the second
boundary condition, Melrose showed that the cwrrent in the flux tube evolves
with repeated reflections of the Alfvénic fronts according to the pair of difference

equations
Janaz — Janp1 = ana{onee) (Jo — 1), (2.3)

and
J‘Zn-{-l — J2n = _(amac)n(‘]ﬁ - Jl)i (24)
where a2 and o, are the reflection coefficients at the photosphere and the central

resistive region respectively, viz.,

_ RBa— R

=2 = 2.5
a1z Ra2+ Ry (2:5)
and R R
c — 1tdl
. = ———, 2.6
“ Rc + RAI ( )

The impedances Ra; = pova; describe the coronal (¢ = 1) and subphotospheric
(2 = 2) plasma. The solution of Equations (2.3) and {2.4) after many reflections
is

I Ry

== 2.7
Iy R+ R, (27
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Equation (2.7) is also the result predicted by a simple circuit theory analogy.

2.1.2 Towards a more realistic treatment

Most of this chapter is concerned with the relaxation of some of the restrictive
assumptions in the existing model. The chapter is divided as follows. In §2.2 the
model is generalised to describe the evolution of the system after the period of
flare energy release ends. In §2.3, the model is generalised to describe a gradual,
rather than an impulsive turning-on and -off of energy release. §2.4 discusses the
necessary description of the flux tube as a force-free magnetic structure. In §2.5,
the flare mechanism of Zaitsev and Stepanov (1991; 1992) — which claims to
account for the appearance of R, in the existing model — is critically examined.

Finally, the results of the various changes are discussed in §2.6.

2.2 The impulsive turning-off of energy release

To model an impulsive end to solar flare energy release, the resistive region R,
is assumed to turn off after the 2mth reflection of an Alfvénic front from the
photospheric boundary and the resistive region. That is, at a time &5, = 2m7y
when a front carrying a current density J,, behind it returns to the origin. Asin
the original model, the current densities behind fronts are assumed purely axial
and uniform in r for simplicity, and the boundary condition at the photosphere
is modelled as a discontinuous jump in Alfvén speed from v,; down to vz, due
to increasing density.

In the following, we also assume that the turning-off of R. occurs before the
Alfvénic fronts generated by R, have time to propagate around the complete
(subphotosplieric} current circuit. This is consistent with the argument that
current closure occurs deep below the photosphere, perhaps at the base of the
convection zone (see chapter 4).

The turning-on and -off of R, like the dissipation itself, is not exphlicitly
addressed in terms of microphysics. A simple picture is that the new current
density J,,, has reached a critical value helow which the resistive processes can
no longer be sustained. This would be appropriate if for instance R, was the
result of anomalous resistivity, or double layers, as discussed above.

The sudden turning-off of R, launches Alfvénic fronts to communicate the
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change at the origin. Behind these fronts a current density J, is established. (All
current densities after the turning-off of R, are denoted with a bar; J;,, is taken
to be equivalent to Jy.) The simple geometry of the original model implies that
the radial electric field E, within the flux tube is odd in z and so continuity of E,
in the plane z = 0 implies zero electric field behind the new fronts. Consequently
the plasma is at rest behind the outgoing fronts. This is consistent with the
reasoning that there can no longer be slippage of field lines in the plane z = 0
in the absence of a resistive disk; ideal magnetohydrodynamics is restored when
R, =0.

Considering the system after & more reflections have occurred, the current
density behind the propagating front inside 0 < z < 1/2 is Jy;1. Applying the
boundary condition of continuity of Poynting flux at 2 = 0 and z = {/2 behind
and ahead of fronts establishes the difference equations describing the evolution

of J;:

j2k+1 — Ja = (—alz)k (jl - jo) (2-8)
and
j2k+2 - j2k+l = (—ﬂflz)‘l‘Jrl (jl - jo) ) (2«9)
where
Jy—Jo= % (Jo = Jam) . (2.10)

Equations (2.8)-(2.10) are derived in the Appendix to this chapter (§2.7.1). Com-
paring Equations (2.8) and (2.9) with Equations (2.3) and (2.4) — the corre-
sponding equations describing fronts generated after R, first turns on — clearly
the former may be derived from the latter with the formal substitution o, = —1.
This corresponds to £, = 0 as might be expected.

Equations (2.8)-(2.10) may be solved to give

Jox = Jom + [1 - (_QIQ)k] (Jo — Jam). (2.11)

The asymptotic value of current implied by Equation (2.11) 1s

Joo = Jo, (212)

that is, the current returns to its initial state after infinitely many reflections.
Equation (2.12) also follows from the requirement that the steady state of the

system is that predicted by a simple circuit model (cf. Equation (2.7}).
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Equation (2.12) proves that the flux tube as a whole returns to its initial state,
allowing the possibility of later flaring activity associated with the same flux tube.
This provides an explanation, in the context of this model for homologous flares,
the name assigned to flares that recur in alimost identical form in a particular part
of an active region (Svestka, 1976). The occurrence of homologous flares suggests
that flaring activity does not catastrophically disrupt the magnetic topology of
the flare site, and that energy resupply to the corona takes place after the flare
ends. The model developed here meets both these requirements. In particular, the
energy stored in the magnetic field of the flux tube above the corona increases after
the flare energy release turns off. This occurs because energy is being continually
supplied as a Poynting flux from the subphotosphere, Magnetic energy is being
released from the subphotospheric portion of the flux tube by the unwinding of
the field at fronts propagating downwards.

2.2.1 Timescales for energy release and resupply

The timescales for energy release and resupply to the corona in this model may
be estimated from the series describing the current density, as follows, If the
resistance 2, turns off after many Alfvén transit times, then a time of interest is
that for the current density to fall a fraction f of the way to its asymptotic value.
Using Equations (2.3) and (2.4), this is given by

_ (=7, (2.13)

fdown - ln(algac) Ay

where both logarithmic terms involve fractional arguments and so are negative.
Similarly, the time for the current to return to a fraction f of its asymptotic value
after K, has impulsively switched off follows from Equation (2.11);

BRLICEE )M (2.14)

fap = 1!1(—0!12)

For significant change, say f = 1, In(1 — f) = — In2, which is of order —1. The

In(1 — f) factors are replaced by —1 in the semiquantitative estimates to follow.
The important ratios in the times given by Equations (2.13) and (2.14) are

po iz M

Ry’ Ra

Clearly & < 1 but the value of ¥ is not determined independently in the model.

(2.15)

However, maximum power release corresponds to y = 1, the case of impedance

19




matching, and for a large flare it is expected that the system is driven hard and
so impedance matching may be approached (Melrose, 1992).

Two limiting cases are of relevance here. In the first, R, does not turn off
until the current density has almost reached its asymptotic value, i.e. after many
reflections, This corresponds to y < 1. Then the characteristic times for winding
up and down are given by Equations (2.13} and (2.14) in the limit of small 2 and
Ys

TA TA
tdown ~ - + y, tup ~ ;‘ (216)

In this limit the times for relaxation and re-stressing are comparable.

The second limit applies when the system is driven hard, so that there is
impedance matching and £, turns off in about one Alfvén transit time, i.e. tgown =
T4 (so Equation (2.13) is not appropriate}. The characteristic time for the current
density to rise is again given by Equation (2.16), t,, & T4/2. This shows that
when the system is driven hard, it returns to its original state in a characteristic
time 1/@ = R, /Ra; longer than the energy release time., With R /B4 =
va1/v42 = 102, a release time of a few minutes implies resupply occurs over several
hours, qualitatively consistent with the timescales observed in homologous flares
(Svestka, 1976; Sturrock, 1980), Melrose (1992) arrived at this same conclusion
by a qualitative argument based on the Poynting flux arriving from below the
photosphere before R, turns off. Here, the result has been rigorously derived by

considering the evolution of the system after £, turns off.

2.3 The gradual turning-on of energy release

In practice the turning-on (and -off) of K, cannot occur abruptly, and the dissi-
pative region cannot appear instantly across the flux tube cross section. A simple
argument suggests that the time-dependent behaviour of the dissipative region
also involves a continuous propagation transverse to field lines, as follows. When
dissipation is established in any localised region in the flux tube, current is de-
flected around the region by the process of propagation of Alfvénic fronts along
field lines, as described above. If the onset of the dissipation is caused by a current
instability triggered when the current density locally exceeds some critical value,
then the deflection of current is likely to increase the current density above that
critical value in the plasma surrounding the dissipative region, and dissipation

1s triggered there too. Haerendel suggested such a cross-field growth of a region
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of enhanced resistivity in his ‘fracture model’ of stressed magnetospheric field
lines (Haerendel, 1980; 1983; 1987; 1988; 1990; 1994). In Haerendel’s model the
dissipation propagates transversely with a speed determined by the dimension of
the region in which magnetic energy is stored and the return time of propagating
fronts deflecting the current. In the context of the model presented here, the
process continues until the dissipative region is established across the diameter
of the current-carrying flux tube.

To avoid the complication of the necessary transverse growth of K., consider
a narrow flux tube, so that changes in resistivity can be considered to propagate
instantly across the width of the tube. In this simple picture, a single value £.(?)
can be assigned as the resistance in the plane z = 0 and inside the flux tube, just
as in the impulsive case. Since the dissipation turns on at ¢ = 0, we can take
R.(0) = 0. The discussion here is limited to the gradual turning-on of R., with
some consideration of the implications for the corresponding gradual turning-off.
We also limit the discussion to the properties of the flux tube for times less than
the Alfvén propagation time to the photosphere.

If the current density through the origin at time ¢ is J(£) then we require
J(t) = Jo for all ¢ < 0 and so a suitable form for J() is

J(t) = Jo + [5(£) — Jo] 0(2), (2.17)

where 8(1) is the step function. This current profile rigidly propagates away from
the origin with the Alfvén speed for times less than the propagation time to
the photosphere, i.e. for 0 < ¢ < 74. The current density can be thought of
as changing behind a continuous sequence of Alfvénic fronts, in contrast to the
impulsive case, where the passage of fronts is discrete. So for 0 < ¢ < 74, the

current in the flux tube is
J(z,8) = J({"), t'=t—2z/va. (2.18)
The magnetic field associated with this current is

1
be(r?tl) = 5#07"](1:,): (2'19)

and using the ¢-component of the Faraday-Maxwell equation assuming £, = 0,

re, JF, [0z = —3B4/0t, we obtain the corresponding radial electric field

E,(r, ) = —%povmr o — §(£] 0(2). (2.20)
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The azimuthal bulk flow corresponding to this electric field is
vg(r, 'y = —FE,.(r, ")/ Bo = Q(t)r, (2.21)

where the angular velocity of the motion is Q) = (zo/p1)? [Jo — 7 (¢)].

Now consider the energetics of the relaxation of the flux tube, The quantities
of interest are the power in the release of magnetic energy in the flux tube Fr.g(?),
the Poynting flux Ps(z,{) and the power associated with the kinetic energy going
into bulk rotation of the plasma in the flux tube, Pyn() (cf. Melrose, 1992).
These may be calculated as follows,

'The z-component of the Poynting vector is S,(r,t') = E.(r,t")By(r, ')/ io and

integrating this over the flux tube cross section gives
Ps(z,t) = yruguard i(¢) o = (1) 0(F), (2.22)
In particular, the power arriving at the origin at time ¢ (¢ > 0) is
Ps(0,1) = rpovard 5(8) o — (). (2.23)
Equation (2.23) may be equated with the power dissipated at the origin at time
t, viz.

2

Puins(t) = [7735(t)] Re(t), (2.24)

to give

i) Ry
T Tt RO (2.25)

Equation (2.25) is analogous to the impulsive case, cf. Equation (2.1).
Next consider the total magnetic energy in the flux tube of length 7, which is
given by
Emagll) = 27 / ® o dr f " b [Bs(r,2,0* + BY). (2.26)
to Jo 0

The power released in the flux tube as the tube unwinds is given by Pr.g(t) =
—dE (1) /dt, which may be evaluated to give

1 .
Proag(t) = gmov.73 UEFIGHE (2.27)

The power going into kinetic energy of rotation is calculated in a similar
fashion. The total kinetic energy in the flux tube is given by
o if2

Bun(t) = 2«/ rdr dz pvg(r, 2, 1) (2.28)
0

0
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and so the power going into rotation is Fu(f) = dEwn(t)/dt which may be eval-

uated to give
1 .
Pun(t) = g‘ﬁ’ﬂovm?‘é [Jo =3 (1)]". (2.29)

Equations (2.23), (2.27) and (2.29) are completely analogous to the impulsive
case, with the replacements i, — R.(¢) and J; — j(t). Conservation of energy

is satisfied (as required by the Poynting theorem) on inspection since
Ps(o,t) + Pkin(t) = Pmag(t). (230)

The power dissipated in the resistive region is given by

R4 2
Al 2
LS - XY 3 2.31
RAI +Rc(t)} ( ) 1] ( )

Pdiss = [

which is analogous to the impulsive case and establishes that the maximum rate of
energy release occurs for R, (t) = R4y, i.e. the case of (instantaneous) impedance
matching. It is reasonable to speculate that in a large flare, the resistance R(t)
increases rapidly from zero to the impedance matched value Ry;.

The results above demonstrate a straightforward generalisation of the existing
model to the case of a gradual turning-on of R, in which all essential features
of the model are maintained. The corresponding case of a gradual end to energy

release (cf. §2.2) is expected to be just as straightforward.

2.4 Towards a force-free model

Coronal magnetic flux tubes are generally modelled as static structures subject
to negligible pressure and gravity forces. With these assumptions the hydrostatic
equation for the flux tube becomes the force-free equation J x B = 0, where J is
the current density in the tube and B is the magnetic field. This equation implies

that the current density is aligned with the magnetic field, and is usually written
curl B = aB, (2.32)

where & is in general some function of position. The model for energy propagation
in a solar flare presented above (Melrose, 1992) is not force-free, and we consider
here the changes necessary to make it so.

Force-free fields are difficult to describe analytically, because Equation (2.32)

is intractable for general a. The problem is simpler for thie case of cylindrically
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symmetric fields B = [0, By(w), B,(@)] (where w denotes the radial co-ordinate)
because then all solutions to Equation (2.32) can be characterised in a straight-
forward way. The hydrostatic balance equation J x B = 0 for a cylindrically

symmetric flux tube is

=0, (2.33)

d (B} + B? B
— +
dw 24t Hoto

which is satisfied by fields described by the generating function f(w@), where

B+ B2 = f(m), (2.34)
and "
1
2 — e — —
B¢, = 2wdw' (2.35)

Consider an Alfvénic front propagating down a cylindrically symmetric, force
tree flux tube, carrying behind it a new current density. The appropriate bound-
ary condition to relate the fields behind and ahead of the front is continuity of
the normal component of magnetic field across the front. If the field behind the
front is also cylindrically symmetric then this boundary condition is equivalent to
continuity of the axial component of magnetic field across the front. If the field
behind the front is also force free, then Equations (2.34) and (2.35) imply that
the generating function ahead of the front (f) is related to that behind the front

(f) by

L df 1 df
[+ % = 5% (2:36)
or
d

— =" -m] =0 (2:37)
The solution to Equation (2.37) is f' = f+C/w?, where C is a constant. Although
the C'/w? term is not itself unphysical (a line current is implied) clearly only
restrictive changes in fields (and hence currents) are possible if the passage of the
{ront is to maintain a force-free, cylindrically symmetric flux tube. For example,
for the constant « (‘linear force-free’) case, C = 0, implying that a front cannot
propagate and change the current whilst maintaining the symmetry and force-free
conditions.

This reasoning suggests that as the front propagates into the force-free flux
tube, the fields and current densities behind the front are not immediately force-
free. They relax to the force-free state dynamically, with the appropriate dynamic
timescale (the Alfvén speed). At some distance behind the Alfvénic front the

24




flux tube is {orce-free. One approach to the problem is then to consider how two
force-free, cylindrically symmetric sections of a flux tube may be matched, via
an intermediate, non force-free and non cylindrically symmetric section. Parker
(1979) has considered a related problem, namely the connection of two cylindri-
cally symmetric sections of a static flux tube by an intermediate non cylindrically
symmetric section, where the axial variation of the tube is brought about by a
static, prescribed variation in external fluid pressure. The treatment here borrows
some aspects of Parker’s (1979) approach.

Consider a field line in the cylindrically symmetric section ahead of the front
at radius w which after the passage of the front and relaxation to a force-free,
cylindrically symmetric state is at radius II. The problem is then, given the ‘ini-
tial’ generating function f(w) to determine Il = [I(w) and the ‘final’ generating
function F(I). Figure 2.1 illustrates the problem. Following Parker (1979), one
relation between the initial and final fields is provided by conservation of axial

flux hetween w and @ + dw and II and II + dII;
B.(IHIIdl = b,(w) @ dw, (2.38)

where the lower case and capital quantities refer to the fields ahead of and behind
the front respectively. Parker’s second condition — allowing elimination of £#(II)
and hence solution for II{(w) - comes from the azimuthal component of the
Maxwell stress. The idea is that for equilibrium of the two sections of the flux
tube at different pressure, no rings of flux should be allowed to slide between
sections. Here, however, this is no longer appropriate since we are considering a
time-dependent process. Instead, some simplifying assumptions are needed about
the form of the fields and currents.

Consider first the case of a uniform axial density current ahead of the front;

jo ifw <
jo=g 0 DT (2.39)
0 fw>w

Then the appropriate cylindrically symmetric force-free solution ahead of the

front is described (for @ < wy) by the generating function
1
(@) = B~ i, (2.40)

where by is the value of the axial field along @ = 0. (The force-free field for

@ > wy is trivial because the current density is assumed to be zero there.)
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Figure 2.1: A simple model for the expansion of the force-free flux tube
due to the propagation of an Alfvénic front. A cylindrically symmetric
force-free section ahead of the front (with generating function f = f(w))
is assumed to be matched, via a non force-free, non cylindrically symmet-
ric section of tube to a second force-free, cylindrically symmetric section
behind the front (with generating function F' = F(II)). The surface in the
diagram is the surface on which one group of magnetic field lines lies.

First we present a simple argument suggesting that the flux tube expands in
response to a propagating front carrying a lower current density with it. For
simplicity, we assume that a uniform current density j; is set up immediately
behind the front, owing to the deflection of current in the front. We denote the
magnetic field ahead of the front b = (0, b4, b,), corresponding to the generating
function (2.40), and the corresponding current density is j = (0, jg,.), where
Jz = jo. We denote the field immediately behind the front b’ = (b, 8, b)), with
corresponding current density j° = (37,75, J;), where j; = j;. Continuity of the
normal component of magnetic field at the front (assumed transverse) implies
that &, = b,. By Ampere’s law b, = powj; /2, and

' :
i = #—10 (% _ gf;) . (2.41)

Using these expressions for the magnetic field and current just behind the front

and the generating function (2.40), the radial force on the plasma just behind the

front is
. y y 1 : :
(' % b)e = jgb, — 5.8 ~ Spow(ja — ji), (2.42)
where I neglect a term involving 967 /Jz. Appeal to divb’ = 0 suggests that this

term is small. Equation (2.42) implies that the flux tube expands in response to
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the passage of a front that deflects current density to the surface of the flux tube.

The expansion of the flux tube may be described by the following simple
model. Assume that the current density in the force-free region behind the front
has the uniform value J;. This region is a circularly symmetric, force-free section

of the flux tube and so is described by the generating function
F(l) = B? - ingU}, (2.43)

where By is the central axial field value. Then applying conservation of axial flux
—- 1.e. Equation (2.38) — between the initial and final sections,

1 1 1
(B2 - 5#;-;H?ij)% dll = (8} — S1dw"i8) dw. (2.44)

This equation is integrable and gives the result

1

I jo\?
— =L 2.45
(2, (2.45)
where I[I[{w = 0) = 0 is assumed. Equation (2.45) shows that the expansion of

the flux tube is linear under the present assumptions. The initial and final total

currents, Iy and I respectively, are related by the particularly simple expression

Iy 1o

(2.46)

I_f @
where [I(cg) = [l is also assumed.

The treatment presented in this section is valid within the context of the
overall model. However, the dynamics of that model are somewhat uncertain.
In the original model for energy propagation in a solar flare (Melrose, 1992) the
propagation of the Alfvénic front was introduced only as a simplified description
of the dynamics of the response of the flux tube to R. turning on. A more
sophisticated treatment must derive the details of the propagation of an Alfvénic
front from the equations of motion of the plasma and Maxwell’s equations (cf.
Goertz and Boswell, 1979). An abrupt change of current density at a propagating
front is equivalent to saying that the azimuthal component of the magnetic field,
or the bulk azimuthal velocity, satisfies the wave equation with the relevant speed
the Alfvén speed. In the existing model, only the azimuthal component of the
momentum equation is satisfied. This simplified description becomes suspect
when applied to detailed questions of the dynamics of the flux tube. Nevertheless,

this section establishes that changing the existing model to describe the relaxation
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of a stressed, force-free flux tube is a non-trivial exercise. In particular, a simple
model is presented above that suggests that when magnetic free energy is released

from the flux tube it expands radially.

2.5 Zaitsev and Stepanov: accounting for R.?7

As discussed in § 2.1, Zaitsev and Stepanov (1991; 1992; hereafter ZS) addressed
the central problem in solar flare theory seen from a circuit viewpoint!': the need
for a flare loop resistance of order R, = 107110730 to account for the observed
power release, whereas a classical estimate of the resistance of a coronal loop
gives a value = 107!1(}, ZS presented a mechanism by which the resistance of
the flaring loop is increased by eight to ten orders of magnitude over the classical
value. Their argument is reproduced briefiy here, followed by a specific criticism
of the mechanism.

ZS considered that the increase in coronal resistance of a flaring loop is a
result of the non-steady state, partially ionised conditions set up when a filament
overlying the loop intrudes into the loop via the flute instability, introducing
neutral plasma. Figure 2.2 illustrates this process. The intrusion of the filament
provides the trigger for the flare.

ZS derived a generalised Ohm’s law relevant to non-steady, partially ionised
conditions, from the three-fluid equations of motion, The form found (in which

terms of order (m./m;)7 are ignored) is

= me(%;—+i/en)‘]+i‘ij_ ' Vp, x B
en en nmilin
1 pF? AV
- — — xB 2.47
en V. nm;vy, dt X B (2:47)

where V is the mean plasma velocity, E' = E + V x B is the electric field in
the moving frame, /' = n,m,/p is the relative density of neutrals and the other
symbols have their usual meaning. Note that SI units are adopted here, whereas
ZS used Ganssian units. Gravity terms are neglected. A similar Ohm’s law is
discussed by Cowling (1976). Note that, if Equation (2.47) is to revert to the
familiar, completely ionised time-dependent Ohm’s law in the limit n, — 0, an

additional term (m¢/ne?)dJ/dt is required on the right-hand side.

1See § 1.3 of chapter 1.
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Figure 2.2: A schematic diagram of Zaitsev and Stepanov’s (1991; 1992)
‘prominence-loading’ model to account for the increase in resistance of a
flaring coromnal loop. A prominence, P, overlying a current-carrying loop,
intrudes into the loop via a plasma instability and introduces dense, neutral
material (the shaded region) as well as non-steady state conditions. The
arrowed curves represent field lines; their twist is not represented.

ZS applied Equation (2.47) as follows. Consider a cylindrical current channel,
of cross section S and length d. In this region prior to the intrusion of the filament
material, the J x B force density must be balanced by the gradient of the gas
pressure. When the flute instability develops, the neutral material introduced
into the loop is assumed to smooth out the original pressure distribution, leaving
a non equilibrium state described by pdV /dt = J x B. Using this expression in
the final term of Equation (2.47), the density of power dissipated in the volume

of interest is

g=F .7 :me("e"f"e") 2o gy xB.1
en nin; Vi
1 X
__nvpe T+ r (J x B)?, (2.48)
€ ‘ i/in

By integrating ¢ over the cylindrical volume of the current channel, ZS arrived
at the total power dissipated, W. ZS argued that the cylindrical geometry con-
sidered implies Vp, - J = 0 (so the third term on the right-hand side of Equa-
tion (2.48) makes no contribution) and that the Vp, x B - J term is of smaller
magnitude than the first and last terms on the right-hand side of Equation (2.48),
and so may also be neglected. ZS additionally assumed a purely axial current

I, with a constant current density J. The only magnetic field included in the
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calculation is the azimuthal field By produced by this J. Then a straightforward

calculation gives W = RI?, where

R=R+ R, (2.49)
with ( \d
Mel Vei + Ven
_ 2.50
f 2retnS ] ( )
and ey
Ry = 12 (2.51)

Brnmiv, S*
Equation (2.50) is the usual Ohmic dissipation; Equation (2.51) is an additional
resistance due to collisions between ions and neutrals under non-steady state con-
ditions. The subscripts ‘I’ and ‘n{’ refer to the linear and non-linear dependences,
respectively, on the appropriate collision frequencies.

The evaluation of R quoted in ZS may be reproduced as follows. The solar
parameters used by ZS are ny = n, +n =10%m™=> T = 10K, d = 5 x 10°m,
S =10%m? F =0.1, and I = 3 x 10" A, Note that, assuming m; ~ m, and
neglecting m, with respect to m;, the number density of neutrals is given by
nn & nF /(1 — F). Only the collision frequencies are then needed to estimate R
and K. Using the standard form v,, = nnar(kBT/ma)% where o is the effective
collision cross section (e.g. Krall and Trivelpiece, 1973) allows the estimates Ry =
4 x 1073(a/107*m?)Q and Ry = 7 x 1077(107* m?/a) Q. These values are
comparable with ZS and reproduce the eight to ten order of magnitude increase
in R that they claimed. Following ZS, we then find R, 1% ~ 10?° W, which is of
order the power associated with small flares.

ZS’s calculation — as reproduced above — produces a serious overestimate
of the resistance of the loop for the following reason. ZS stated that before
the filament intrudes into the loop, the loop is in equilibrium, with the Ampere
force density, J x B, balanced by the gradient of gas pressure. However, for the
perpendicular current density and magnetic field geometry they assumed in the
derivation of Equation (2.49), this could not be the case. For their geometry,
IJ x Bl = JB, < (I/S);LUI/[‘ZW(S/W)%] ~ 3 x 1072 Nm™ is very much greater
than any relevant pressure force. For example, a plausible estimate of the pressure
force density is |Vp| = nksT/(S/7)7 = 2% 10~ Nm™2, implying |Vp| < |1 x B
for most of the cylinder of interest. The geometry of J and B assumed by ZS is

the underlying problem: the current density and magnetic field in the corona are
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not perpendicular (as ZS assumed) but are close to parallel (i.e. force-free), with
the departure from parallel defined by a residual pressure gradient, {J x B| =
|Vp| ~ nkgT/(S/x)2. Following ZS’s own argument, after the filament material
intrudes into the loop, the pressure gradient is smoothed out and the J x B
force density is unbalanced. Its magnitude must still be of order nkpT/(S/x)z,
however, which provides a more self consistent estimate of the contribution of the

final term in Equation (2.48) to the resistance of the flaring loop:

F2

nm;Vipd

Rnf =

2 , 2
/]JxBPdV ~ L5 [(”’”BT}

S/fr)%
~ 6x1078(107®m?/o) 0. (2.52)

nm;vinl?

This (revised) estimate is about four orders of magnitude smaller than ZS5’s value.
Whilst R, provides a considerable increase over £, the increase is not enough
to account for the energy release in even the most modest flares. There are
many other possible criticisms of ZS’s approach. Their mechanism predicts, for
example that energy release should occur more powerfully at the chromospheric
level (where the cross-sectional area of the tube, S, is smaller), but there is no
observational support for this, The criticism detailed here is enough, however, to
show that the mechanism of ZS does not produce the spectacular (eight to ten

orders of magnitude) increase in the resistance of a coronal loop claimed.

2.6 Conclusions

This chapter presents several refinements of an existing model for energy propa-
gation into the primary site of energy release in a solar flare. The existing model
(Melrose, 1992) describes the relaxation of a stressed magnetic flux tube when
a dissipative region turns on at its midpoint. The dissipative region is a simple
model for the flare energy release site.

In § 2.2 the model is generalised to describe the evolution of the system after
the flare energy release turns off. It is shown that energy is resupplied to the
corona after an impulsive end to the flare, from the subphotospheric portions of
the flux tube. The system finally returns to its original (pre-flare) state. This
process may provide a simple explanation of the phenomenon of homologous
flares, where repeated flaring activity is observed in the same site in an active

region. For a flare to re-occur in a given region, the magnetic and current topology
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of the region must be re-established. This implies energy resupply to the coronal
magnetic fields, as demonstrated by the present model. The timescale for energy
resupply in this model is much greater than that for release if the system is driven
hard in the release phase (a reasonable assuinption for energetic flares), consistent
with the observed delay between homologous flares.

In §2.3, the model is generalised to describe a gradual, rather than an im-
pulsive turning-on and -off of energy release. The model retains its principal
features, with time variations in the resistance of the dissipative region communi-
cated to the flux tube by a continuous sequence of Alfvénic fronts. In particular,
the maximumn rate of energy release occurs when the resistance of the dissipative
region instantaneously matches the Alfvénic impedance of the coronal portion of
the flux tube.

§2.4 discusses the necessary description of the flux tube as a force-free mag-
netic structure. The model presented is incomplete, but it introduces the new
result that the relaxation of the stressed, force-free coronal magnetic flux tube
involves the radial expansion of the tube.

Finally, § 2.5 presents a critical examination of Zaitsev and Stepanov’s (1991;
1992) model to account for the dramatically increased resistance of a flaring
coronal loop. In Zaitsev and Stepanov’s model, a filament overlying a current-
carrying loop was assumed to intrude into the loop via an instability, introducing
dense neutral material and non-steady state conditions near the loop apex. The
Ohm’s law relevant to these conditions predicts an increase in resistance over the
classical, Spitzer resistivity. It is shown, however, that the eight to ten orders of
magnitude increase estimated by Zaitsev and Stepanov is based on the incorrect
assumption of non force-free conditions in the loop before the introduction of the

filament plasma. Consequently, the model is not a satisfactory flare mechanism.
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2.7 APPENDIX

2.7.1 Derivation of Equations (2.8)—(2.10)

First, define t;, = k74, the time of the A" reflection of a front, recalling that R,
turned on at ¢ = 0. We assume that R, switches off at ¢ = t5,,, when the front
with current density J,,, behind it passes through the origin. A front is launched
to communicate the impulsive end of energy release, carrying behind it a new
current .J;, where for simplicity we assume Jo = Jom.

Consider the system just after time ¢ = 5(54.m). A front leaves the origin, with
a current density Jo,41 behind it and current density J,, ahead. The electric field

in the region 0 < z < I/2 may be written (cf. Melrose, 1992)

1

E, = —5;[!01?,417‘ {32n+1 + (52:1 - 32n+1) 0[3 —var(t — t2(n+m))]} . (2.53)

As stated above, the radial electric field in this model is an odd function of z.
This follows because the current density and hence B, are even functions of z
(by symmetry), and so, from 8F,/0z = —8B4/0t, E, is odd in z. The radial
electric field must be continuous at the origin, and requiring £, as defined by

Equation (2.53) to be odd about the origin and continuous there implies
Jang1 = 0. (2.54)
The electric field may also be written in terms of the current densities, as
E. = —-%,ugv,“r(jgn — Jont1) O[z — vt — tg(n+m))] , (2.55)
and comparing Equations (2.53) and (2.55) and using Equation (2.54),
Jon = J2nt1 — Jon. (2.56)

Next, consider the flux tube just after time ¢ = t3(4n)41, as fronts depart
z =1/2. A front propagates into the region z > [/2, carrying behind it a current
density Jyn42 and ahead of it the current density is Jo,. A front propagates
in the negative z direction away from z = {/2 as well, with a current density
Jans2 behind it and a current density Jany: ahead, The radial electric fields in
0 < z < 1/2 (denoted ‘—") and in z > {/2 (denoted ‘+’) may be written

- ]- = = =
ES = ~giovarr {Jzn+1 + (Jan+2 — J2n+1) Q[z —va(t — tz(n+m)+1)]} o (2.57)

33




and
1 - _ _
E: = —§HDU.42?' {k‘2n+2 + (J’»‘zn - k2n+2) 9[2 - UAz(i - tz(n+m)+1)]} . (2-58)

Following the procedure to obtain Equation (2.56), comparing Equations (2.57)
and (2.58) with the electric field calculated from the current densities and using
Equation (2.54),

Jantz = Jant2 — Jant1, (2.59)

and
I:‘Zn - ‘?"2n+2 = j‘2n+‘2 - j2n- (260)

Also, requiring E. to be continuous at z = {/2 behind the fronts gives that
Rt jansz = Raz kanya. (2.61)
For consistency in the definitions of the k; it is necessary that
ko = Jo — Jom. (2.62)

Equation (2.10) may be obtained from Equation (2.61) when n = —1, together
with Equations (2.62) and (2.56) when n = 0:

Ji = Jo = == (Jo = Jam). (2.63)
Next we derive Equations (2.8) and (2.9). Equation (2.61) implies that
Rt (Jansz = Jan) = Ratz (Fangz — kan) (2.64)
which can be rewritten by noting that Equation (2.56) and (2.59) imply
Ton+2 = Jon = Jangz — 2Jongr + Jan, (2.65)

as

R (j'2n+2 = 2Janp1 + jzn) = Rap (j‘Zn - j2n+2) ) (2.66)

where Equation (2.60) is also used. After some manipulation, Equation (2.66)

may be recast as

j2n+2 - j2n+1 = Q1 (J—2n - j2n+1) ) (2.67)

which describes the boundary condition on current changes at z = {/2. The

corresponding condition at z = () may be obtained by combining Equations (2.56)
and (2.59) to give

Jangz — Jants = Jang1 — Jansa. (2.68)
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Together, Equations (2.67) and (2.68) give

j?n-l-l - J_2n = —0gy (j'ln.—l - jzn—z) .

Applying Equation (2.69) n times gives Equation (2.8), viz.

j’ln-l-l - j?n = (—a12)" (jl - jo) '

Equations {2.67) and (2.70) give Equation (2.9).
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Chapter 3

Interpreting Yohkoh hard and

soft X-ray flare observations

Abstract: A simple model is presented to account for the Yohkoh flare observations
of Feldman et al. (1994), and Masuda (1994). Electrons accelerated by the flare are
assumed to encounter the dense, small regions observed by Feldman et al. at the tops of
impulsively flaring coronal magnetic loops. The values of electron density and volume
inferred by Feldman et al. imply that these dense regions present an intermediate thick-
thin target to the energised electrons. Specifically, they present a thick (thin) target to
electrons with energy much less (greater) than F, where 15keV < E, < 40keV. The
electrons are either stopped at the loop-top or precipitate down the field lines of the
loop to the footpoints. Collisional losses of the electrons at the loop-top produce the
heating observed by Feldman et al. and also some hard X-rays. It is argued that this is
the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda.
Adopting a simple model for the energy losses of electrons traversing the dense region
and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source,
the footpoint sources and the region between the loop-top and footpoints. These spectra
are compared with the observations of Masuda. The model spectra are found to agree
qualitatively with the data, and in particular account for the observed steepening of
the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses

of the loop-top and footpoint sources.

36




3.1 Introduction

Recent observations by the Yohkoh spacecraft have provided new insight into the
vexed question of the physical processes behind solar flare hard and soft X-ray
emission. For the first time the distribution of hard X-ray emission with height
in the solar atmosphere has been unambiguously determined by well resolved
observations of limb flares (Masuda, 1994). In this chapter we are concerned
with explaining some of the plasma physics of two specific sets of observations:
those of Masuda and those of Feldman et al. (1994). By way of introduction, a
summary is given of the main results of those observations.

Feldman et al. considered 38 impulsive X-ray flares observed with the high
resolution Yohkoh Soft X-ray Telescope (SXT). Typically, the emitting regions
were found to be tiny pointlike sources (smaller than one SXT pixel, so V <
3 x 10" m?®), surrounded by fainter extended emission. The diffuse emission
defined a loop structure, with the pointlike emission at the top of the loop. The
electron temperature for the point source was derived spectrally; for all flares
observed, the peak temperatures were uniformly close to 2 x 107 K. Feldman et
al. argued that conduction cooling would be too slow to account for the observed
decay in temperature of the bright features during the cooling phase. Also, the
continued appearance of the sources as pointlike during the cooling is inconsistent
with conductive cooling along field lines. Assuming radiation cooling dominates,
the cooling times observed imply a lower limit to the number density of electrons
of order 10 m™3, An upper limit of n, = 10**m~> was derived by Feldman
et al. from line intensity ratios. Adopting the average emission measure n?V =
3 x 10" m™ at peak intensity, these limits on density imply the corresponding
range for the emitting volume 3 x 101 m?® < ¥V < 3 x 10'®¥ m3,

The values for electron number density derived by Feldman ef al. are large
compared with typical coronal (‘quiet Sun’) values, e.g. n, =~ 10" m~3 (Brown
and McClymont, 1975). This observation provided the initial motivation for the
model presented below.

The observations of Feldman et al. are at variance with the predictions of the
‘chromospheric evaporation’ model of the heating of the flare soft X-ray emitting
plasma (Acton et al. 1992). In the evaporation scenario, the hot, dense coronal
flare plasma is supposed to be chromospheric material, evaporated from the foot-

points of coronal loops by flare energy incident from above (Doschek et al. 1990).
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The hot plasma should gradually rise up to fill the loop during the flare. These
observations and others establish that the loop-tops contain a region of dense,
hot, soft X-ray emitting plasma early in the flare, implying that pre-existing,
coronal plasma is heated in situ (Feldman, 1990). Any acceptable mode] of flare
hard and soft X-ray emission must account for such in situ heating. Melrose and
Dulk (1984), for example, developed a model for the in sitw heating of the coro-
nal soft X-ray emitting plasma through absorption of radio frequency emission
produced by energetic electrons trapped in a flaring coronal loop.

Masuda (1994) presented simultaneous, coaligned hard and soft X-ray images,
taken with the Yohkoh Hard X-ray Telescope (HXT) and the SXT, for two im-
pulsive limmb flares. These showed that, in addition to two footpoint hard X-ray
sources, a hard X-ray source was located (in both cases) at or above the apex of
the loop outlined in soft X-ray. Figure 3.1 shows one of the images, for the flare
which occurred on January 13, 1992. A further analysis of ten limb flares observed
with the HXT showed three distinct types of hard X-ray sources associated with
flares: footpoint sources (8 events/10), gradual loop-top sources (10/10) and im-
pulsive loop-top sources (6/10). Masuda presented some estimates of the spectral
indices of the footpoint and loop-top sources, based on the count ratios between
adjacent energy bands of the HXT (see §3.4).

Masuda interpreted the presence of the loop-top hard X-ray source in the
context of a theoretical model for flare energy release (e.g. Forbes and Malherbe,
1986). The mechanism of the energy release was considered to be magnetic
reconnection, proceeding in a region some distance above the coronal loop of
interest, The hypothesised reconnection outflow impinges on the loop, creating
a shocked region just above the loop. The loop-top source observed by Masuda
may be evidence for the presence of a shocked region, possibly where electrons
are accelerated. In this paper we assume only that accelerated electrons are
introduced by some mechanism at the loop-top, and account for the loop-top
hard X-ray source observed by Masuda in terms of the interaction of the electrons
with the ambient plasma.

The sections of this chapter are divided as follows. In §3.2 a physical mech-
anism is outlined for the production of Masuda’s loop-top and footpoint hard
X-ray sources, as well as the loop-top soft X-ray sources described by Feldman et
al. This is the basis in § 3.3 for a detailed theoretical model of the photon spectra

of the observed hard X-ray sources. In particular, the spectral indices of the
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Figure 3.1: The coaligned hard and soft X-ray images obtained by Masuda
(1994) for the Jan 13 flare observed at the limb of the sun {the solid line).
The greyscale is the soft X-ray, and the contours represent hard X-ray
emission in the 33-53 keV range. (From Kosugi, 1994.)
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model loop-top and footpoint sources are determined and an expression for their
relative brightness derived. In § 3.4 these model spectral indices and predictions
about relative brightness are compared with Masuda’s data. In §3.5 the energy
going into heating the model loop-top source is written down and compared with
the spectral observations of temperature obtained by Feldman et al. §3.6 con-
tains a discussion of possible directions for improvement of the model, which is a
prelude to future work. Finally, the main results of the model are summarised in

§3.7.

3.2 Accounting for a loop-top source

The bulk of the impulsive energy release in a solar flare goes into accelerating
> 10keV electrons. These electrons precipitate from near the apex of a coro-
nal magnetic loop in both directions along field lines to the chromosphere. In
the denser layers of the solar atmosphere the electrons encounter a thick tar-
get (Brown, 1971) and are stopped, producing the hard X-ray footpoint sources
observed by Masuda (1994) and a wealth of secondary flare emission.

We assume that the accelerated electrons are introduced by some means at
the centre of the dense loop-top regions observed by Feldman et al. (1994) in
soft X-rays. All the electrons then traverse, on average, half the dense region in
escaping along field lines into the thinner, ambient coronal plasma.

In escaping the dense region at the top of the flaring coronal loop, the acceler-
ated electrons traverse an intermediate thick-thin target. A given column depth of
material is a thin target to a non-thermal distribution of electrons if that electron
distribution remains unchanged in traversing the target. A thick target is a col-
umn depth of material sufficient to stop all the non-thermal electrons. The dense
loop-top region considered here has a column depth such that it stops low energy
electrons in the injected electron flux spectrum, but does not stop high energy
electrons in the spectrum. This may be demonstrated as follows. The mean free
path for an electron of energy E is AM(E) = E?*/n K, with K = 271rZ(m.c*)?InA,
where ¢ 1s the classical radius of the electron and In A is the Coulomb logarithm.
For a given column depth, ¥y = n.l, the transition between thick and thin target
occurs at an energy F, defined by [ = M(E,)/2, giving B. = (2K Np)z. The values
of Feldman et af. for n, and V (quoted above) imply a range of column densities

10 m=2 < n, V3 < 7x 102 m~2. The lower value of column density corresponds
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to a larger, less dense source (V = 3 x 10" m3, n, = 10 m™3). If accelerated
electrons are introduced at the centre of the dense region, and they encounter half
this column density on their outward path, this implies 15keV < E, < 40keV.
Here the values of In A appropriate for a hydrogen plasma with T, = 10" K and
the number deusity guoted above are used in each case (Spitzer, 1962), namely
InA =16 (ne = 10°m™3) and InA = 18 (r. = 10 m™3). The range of non-
thermal electron energies of relevance to solar flares is 10-100 keV. Consequently,
a significant fraction of electrons in the accelerated electron population have en-
ergy E < E, and so are likely to be stopped at the top of the loop. This process
may provide the heating of the loop-top source necessary to make it visible in
soft X-ray (Feldman et al.) and also produces some hard X-rays. It is argued
here that this is the mechanism responsible for the loop-top hard X-ray sources
observed in limb flares by Masuda. The loop-top soft X-ray source is produced
by the heating of pre-existing dense coronal material, and so avoids the weakness

of the chromospheric evaporation model discussed above.

3.3 A detailed model for the spectra of the

loop-top and footpoint sources

A power law electron flux spectrum Fo(E)} = AE™® (electrons per unit time and
per unit energy E) is assumed to be injected by the flare energy release mechanism
i the centre of a dense cylindrical region of column depth 2/ located at the
apex of a coronal loop. This simple geometry implies that all electrons encounter

the column depth N in escaping into the ambient coronal loop plasma,

3.3.1 Evolution of the electron flux spectrum

To describe the X-ray spectrum of an intermediate thick-thin target accurately,
it is necessary to describe how the electron distribution changes in traversing the
target (Leach and Petrosian, 1981; 1983)}. This is in contrast to the thick- or thin-
target limits, where only the injected electron flux spectrum needs to be specified
(Brown, 1971). The treatment here follows Brown and McClymont (1975). For
simplicity it is assumed that the electrons experience no change in average pitch

angle as they traverse the dense region. Then the flux spectrum at column depth
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N has the analytic form
EF, (VE?+2KN)
VE2+2KN

cf. Brown and McClymont (1975), and Leach and Petrosian (1981). Note that it

is assumed that the electron propagation time to the footpoints is much shorter

F(E,N) = (3.1)

than the time scale for variation of F4, so that the electron distribution in the

flaring loop may be treated as static.

3.3.2 The photon spectrum from the loop-top

Following Brown and McClymont (1975), we adopt the non-relativistic, direction-
integrated Bethe-Heitler cross-section for the production of bremsstrahlung pho-
tons in collisions of energised electrons with ambient particles. The spectrum
(photons per unit time, per unit energy ¢ and per unit area at the Earth) of the
loop-top source is then that of a source of column depth Ng in which the electron

flux spectrum is given by Equation (3.1). This may be written
I(e) = In(e) — I'(e), (3.2

where y,(¢) is the thick-target spectrum

AkpuZ? B(6-2,2%
T(e) = Arm ( 3) e (6-1).

T odrR2K (8- 2)(6—1) (33)

with ke = Sarim.c?, and where « is the fine structure constant, B(p, q) is the
Beta function (Abramowitz and Stegun, 1965), # = 1 AU and Z ~ 1.4 is an
average atomic number for the solar atmosphere. The second term on the right

of Equation (3.2) represents the departure from thick-target behaviour and is

given by r —oo1)
; ArgyZ e -
= T c ,6 . !
Ie) = oy 5 =7 O (Be/e6) (3.4)
with
. -1{5-1)
a(8,8) = fo 273 (14 8% f(a) da, (3.5)

and with B, = (2K No)?, f(z) = In](14+vT — 2)/(1—/T = 2)]. Equations (3.2)—
(3.5) are derived in the Appendix to this chapter (§3.8.1).
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Figure 3.2: The electron flux injection spectrum F* = F(E, No) for the
footpoint source for the case § = 5. The graph shows log(F/AE?) as a
function of log(E/E,). The spectrum is depleted below E, = (2I(N0)%.
For E < E,, F ~ E and for E > E,, I' ~ E~5.

3.3.3 The photon spectrum from the footpoints

Ignoring changes in #{¥, N) in propagating from the loop-top to the footpoints,
the footpoint source can be considered to be a thick target where the injection
flux spectrum is F(E, Np), defined by Equation (3.1). This injection spectrum
(illustrated in Figure 3.2) is depleted of low energy electrons, which see the loop-
top dense region as a thick target.

It then follows that the spectrum of the footpoint source is Ir,(e) = I'(g), de-
fined by Equation (3.4). This may be obtained by the usual thick-target formulae
with Fo( E) = F(E, No) (e.g. Brown, 1975), or simply by recognising that, if un-
resolved, the sum of the loop-top and footpoint spectra must be the thick-target

spectrum Equation (3.3). Hence Equation (3.2) must hold with I'(¢) = Ip.(¢).

3.3.4 The photon spectrum from between the loop-top

and footpoints

If the electron flux spectrum is unchanged in propagating from the loop-top to
the footpoints, then the electrons must encounter a thin target between these two

regions. A spectrum I,(¢) may be calculated for bremsstrahlung from electrons
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stopped in the ambient coronal loop plasma by using the thin target formulae
(e.g. Brown, 1975) with the electron flux spectrum F(E, Ng) and assigning a
column depth N, to the region. We find

72
L(g) = ﬂ%‘%f_me-(&“)a (E.[e,8), (3.6)
T
with 1
1 . §
G'(8,8)= [ o (146%%) 7 (@) do, (3.7
0

Equations (3.6) and (3.7) are devived in the Appendix to this chapter (§3.8.2).

3.3.5 Behaviour of model spectra

Figure 3.3 shows the qualitative behaviour of the spectra Iy and I,. The most
important prediction of this model is clear from the figure, namely that both
spectra show a break in (photon) spectral index + about ¢ = £, = (2KN0)%, but
the sum of the two spectra does not show a break in spectral index. hy, + I, is
the spectrum of a thick target and so consists of a single power law (with index
6 — 1). Equation (3.6) implies that the spectrum of the portion of the flux tube
between the loop-top and footpoints also exhibits a break in spectral index about
e=F,.

The breaks in index of the model spectra may be understood as follows, Con-
sider first the behaviour of the spectra hy, Iy, and I, at high energies, i.e. when
€ > F.. At high energies the loop-top source has the spectral index § + 1 — the
spectral index of a thin target (Brown, 1975) — because high energy electrons
(vesponsible for the high energy photons) see the loop-top region as a thin target.
The footpoint source at high energies approaches a power law with index § - 1,
because the injected spectrum at high energies is undepleted and these electrons
meet a thick target at the footpoint. Finally, for high energies I, becomes a
power law with index é + 1, because it is a thin target to an undepleted electron
spectrum. Next consider the behaviour of the model spectra at low energies, i.e.
when ¢ € E,. At low energies, the spectral index of the loop-top is & — 1, be-
cause low energy electrons (which produce most of the low energy photons) see
the loop-top region as a thick target. The spectra Iy, and I, are not power laws
at low energy, because they are produced by a depleted electron flux spectrum.

The other important property of the spectra /), and I, as seen in Figure 3.3 is
that 5y dominates over Iy, for € € E., whilst I, dominates for € > E,.. Ate = E.
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Figure 3.3: The scaled photon spectra log(fi/I'} (solid) and log(Ip /")
(dashed) plotted as a function of log(e/E.),where I' = 47 R*K /(Ak g Z?).
The loop-top source approaches spectral indices § — 1 and § + 1 for ¢ € E,
and ¢ » FE. respectively. The footpoint source is not a power law for
e & F, butis for € » E,, when it approaches the thick-target index § — 1.

they are equal in magnitude. This may be understood as follows. Low energy
photons are most likely to be produced by the stopping of low energy electrons,
which see the loop-top region as a thick target. Consequently the loop-top is
brightest at low photon energies. High energy photons must be produced by high
energy electrons, which see the loop-top as a thin target and so are likely to reach
the footpoints. Consequently the footpoints dominate the photon spectrum at
high energies. The equivalence of the magnitude of the two spectra at ¢ = £,

provides an observational determination of I, according to the model.

3.3.6 Ratio of count rates

To compare the predictions of the model spectra with Masuda’s data, a relevant
quantity is the ratio of count rates between the footpoint source and the loop-top

source above a cut-off energy !

r(e > o) = /oo Iip(€) ds/ /E:O hi(e) de. (3.8)

L1i]
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Figure 3.4: The ratio r{¢ > £o) of counts per second at the footpoints
to the loop-top above a cut-off energy £o plotted as a function of £o/ L.
The solid curve is for the case § = 5, the dashed curve is § = 7 and the
dot-dashed curve is § = 9.

We find

_ B(5 -2, -
rle>eo) = [(5 A6/ ol B ) 1] ' (39)

with

1 1 1 _% 5—
J(u,8) = (2u)a(5—2)f0 A6 [1 4 (a/u)’] (5-2)

x PLEC {11+ (ofu)t) ) () de, (3.10)

5—4)

where Pf{z) is the associated Legendre function of the first kind {Abramowitz
and Stegun, 1965). Plots are shown in Figure 3.4 of r(e > €p) as a function
of €9/ E. over an appropriate range. The function r(¢ > gy) is a monotonically
increasing function of e/ E.. This is because the footpoint source is brighter at
higher energies. Also, r{¢ > €o) decreases with §. This is because steeper injection
spectra imply more lower energy electrons, which are likely to be stopped at the

loop-top, hence increasing the relative brightness of the loop-top source.

3.3.7 A modified model

Before a detailed comparison of the predictions of the model and Masuda’s ob-

servations (Masuda, 1994) is presented, a simple change to the model needs to
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be discussed. It is possible that only a fraction f of the electrons injected at the
loop-top encounter the dense region, whilst a fraction 1-- f avoid the dense region,
encountering only the ambient coronal density. The consequences of this change
are straightforward to outline. The loop-top source is an intermediate thick-thin
target produced by an injection flux spectrum fFy(£), and the footpoint sources
are thick targets with injection spectrum fF(E, Np) + (1 — f)I5(E), assuming
again that the electrons are stopped according to Equation (3.1). The loop-top
spectrum is then Iy, = f(Iy, — I'), where Iy, and I’ are given by Equations (3.3)
and (3.4). The footpoint source may be oblained by the argument that the sum
of the loop-top and footpoint spectra must be a thick-target spectrum for the
injected flux Io(E). Consequently, one has Iy, = (1 — f)lin + f1’. This modified
model introduces the following changes. The loop-top source has an identical
spectrum to that of the original model, but is reduced in brightness by the factor
f. The footpoit source has a more complicated behaviour, but may be under-
stood qualitatively as follows. If all the electrons encounter the loop-top dense
region (f = 1), the model is identical to the original model. If all the electrons
miss the loop-top dense region (f = 0), the loop-top source vanishes and the
footpoint spectrum is that of a thick target, i.e. a power law with index § — 1.
Consequently, for arbitrary f the spectrum is intermediate between these cases,
exhibiting less of a break in index at ¢ = F, than the extreme case f = 1, but
agreeing at large £ with either of the extreme cases. Except where indicated be-
low, the observations of Masuda (1994) and Feldman et al. (1994) are compared
with the original (f = 1) model.

3.4 Comparison with Masuda’s observations

3.4.1 Masuda’s spectral indices

Masuda’s (1994) individual spectral indices for loop-top and footpoint sources
for ten limb flares are reproduced in Table 3.1. The quoted values are approxi-
mate, derived from count rates in adjacent energy bands under the assumption
that a single power law holds over both bands. Specifically, spectral indices +
were inferred from the ratio of count rates of the L (14-23 keV) and M1 (23-
33 keV) bands (here denoted 4(M1/L)) and the M1 and M2 (33-53 keV) bands
(y(M2/M1)). No detailed spectra are possible with the Yohkoh instruments.
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Date (M1/LY y(M2/M1) o (M1/L}  p(M2/M1)

91/12/02 5.5 5.5 3.2 6.3
91/12/15 : : 3.5 3.9
92/01/13 2.6 4.1 < 2.0 4.0
92/02/06 6.8 > 9.0 : .

92/02/17 5.4 > 9.0 2.7 6.7
92/04/01 . . 3.2 3.7
92/10/04 < 2.0 5.2 2.3 3.4
92/11/05 - . 3.9 6.5
92/11/23 5.5 6.3 3.8 4.6
93/02/17 3.6 6.1 4.1 6.0

Table 3.1: The spectral indices y(M1/L) and y(M2/M1}) (see text) derived
by Masuda (1994) for the footpoint (fp) and loop-top (1t) sources in the ten
limb flares observed. A dash indicates that one source was not observed
for that flare,

Spectral indices derived from count rates in such broad adjacent energy bands
are subject to considerable uncertainty. Consequently, care must be taken in the
comparison of the spectral predictions of the model presented above and Ma-
suda’s data. Despite these caveats, our simple model qualitatively agrees with
many aspects of Masuda’s data.

Masuda observed localised footpoint and loop-top sources in the higher energy
bands (M1, M2) and a more diffuse X-ray emission, following the soft X-ray loop,
at lower energy (L). This qualitatively agrees with our model. The thin-target
emission described by [, is seen only at lower energies because higher energy elec-
trons (responsible for high energy photons) are less likely to be stopped between
loop-top and footpoints. Masuda’s loop-top and footpoint speciral indices are
based on a procedure of drawing a box around each source and counting photons
within the box for each energy band. This approach neglects the diffuse emission
from the loop at lower energies. Consequently it is not possible to compare in
detail the spectrum I, predicted by Equation (3.6} and observation. In the re-
mainder of this section we compare the model spectra I, and Ip, with Masuda’s

observations.
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3.4.2 The break in spectral index

One striking aspect of Masuda’s data is the break in spectral index, i.e. the
difference between v(M1/L) and v(M2/M1). Sieepening of (unresolved) flare
impulsive hard X-ray spectra at high energies is a familiar observational fact
(Brown, 1971) but occurs generally in the 60-100 keV range (and sometimes as
high as 500 keV), significantly higher than the steepening inferred by Masuda
for the individual, resolved loop-top and footpoint spectra. The change in v in
the unresolved case is generally less than two and is attributed to a fundamental
change in the injected electron distribution at these energies. These comments
refer to the early impulsive phase of hard X-ray emission. More detailed spectral
behaviour is observed in the later stages of the flare (e.g. Lin et al. 1981).

The model presented here predicts a break in spectral index for both the
loop-top and footpoint sources at ¢ = £, = (QKNO)%, owing to the passage of
the injected electrons through the intermediate thick-thin target at the loop apex.
As explained in §3.2, the observations of Feldman et al. (1994) imply that E, is
in the range 1540 keV. So the model accounts for the observed spectral break
at the right energy.

The model also predicts that if the loop-top and footpoint sources are unre-
solved (so that only the sum of their spectra is relevant) no break in spectral index
should be observed at F,.. It is not possible to test this prediction from Masuda’s
published data without a detailed knowledge of the instrumental response of the
Yohkoh HXT (Takakura et al. 1993). With the appropriate knowledge, this test
of the model could be straightforwardly conducted.

3.4.3 Behaviour at high and low energies

The model presented above also predicts specific relations between the spectral
indices of the loop-top and footpoints at high and low energies. For example,
the spectrum of the loop-top at low energies (i.e. ¢ € F.) should be the same as
that of the footpoint sources at high energies (¢ 3> E.), namely é — 1. Masuda’s
data (in the cases where both footpoint and loop-top indices were available for
the same event) roughly agree with this prediction. The greatest deviation is in
the 93/02/17 event, where the indices of interest differ by 2.4.

Another prediction is that the spectral indices of the loop-top at high and low

energies should differ by a factor of two, the steepening indicating the transition
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between thin- and thick-target over the 10-100 keV range of electron energies.
There seems to be some evidence for this in Masuda’s data. Only the event of
91/12/02 shows no change in index at the loop-top between low and high energies.
The same event did show a break in the footpoint spectra between low and high
energies, which is difficult to explain in the context of our simple model.

Similarly the model predicts a difference of two between the spectral indices
of the loop-top and footpoint sources at high energy, with the footpoint source
being harder. Masuda’s data suggest that the footpoint sources are harder than
the loop-top ones, but this point needs to be confirmed by a more detailed data
analysis. Indirect evidence for the prediction that the footpoint sources are harder
than the loop-top is provided by the observation that the average height above the
photosphere of hard X-ray sources observed by Yohkoh (based on =~ 100 flares)
decreases with increasing energy (Kosugi, 1993).

There is also some evidence in Masuda’s data for the other specific predictions,

although there are individual discrepancies.

3.4.4 Type A flare observation

Another piece of evidence for the model is provided by the event of 92/02/08,
which was remarkable in two ways. The first is that, in the main (gradual) phase
of the flare, only a loop-top source was observed, with no corresponding footpoint
emission. The second is that the spectral indices derived were the largest of the
set of observations. Masuda described this event as an example of a “super-hot”
or Type A flare!. This event qualitatively agrees with the model presented above,
as follows. As explained in §3.3, the relative brightness of the footpoint source
is expected to decrease with increasing 8, as the bulk of the accelerated electrons
have low energy and are stopped at the loop-top (see Figure 3.4). For a steep
enough injection spectrum and sufficient column depth Ny, the footpoint source
should not be visible at all. Interestingly, footpoint emission was observed by
Masuda in an earlier, extremely hard impulsive episode from the same flare (see
Figure 3.5). This also agrees with the model presented above: the earlier burst
consisted of higher energy electrons (it was most prominent in the M2 and H

bands) which escaped from the loop-top source to prodtice footpoint emission.

1See §1.2.1 of chapter 1.
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Figure 3.5: The time history of hard X-ray emission observed in the four
Yohkoh bands for the flare of December 6, 1992, An early, very hard
episode is seen at about 03:17. (From Masuda, 1994.)
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3.4.5 Relative brightness of the footpoints and loop-top

The expression (3.9) (and Figure 3.4) may be compared more generally with the
observation by Masuda that the loop-top impulsive source is less intense than the
footpoint sources by a factor < 5 at energies > 25keV. As shown in §3.2, the
observations of Feldman et af. imply that 15keV < E, < 40keV, so taking the
cut-off energy o = 25keV implies 0.6 < g/ FE; < 1.7. Consulting Figure 3.4, for
reasonable § this range of g4/ F, does indeed imply a loop-top source less intense
than the footpoint source by a factor less than about six. This result is subject
to the caveat that Equation (3.9) does not include the instrumental response of
the Yohkoh HXT (Takakura et al. 1993).

3.5 The heating of the loop-top source

When electrons are stopped at the loop-top dense region, only a small fraction of
the electron energy (typically & 107°) goes into producing hard X-rays. The bulk
of the energy goes into collisional heating of the ambient plasma. Based on this

fact, a simple model may be constructed of the heating of the loop-top source.

3.5.1 The energy deposited at the loop-top

The number of electrons stopped per second, per unit electron energy, ¥, in the
dense region from N = 0 to N = Ny is N = Fo(E) — F(F, M), and so the power
deposited is P = [ NEdE, where Ep is the necessary cut-off at low energy
in the injected electron spectrum. The quantity Ep is probably around 10 keV,
although it is difficult to determine observationally, and may be as high as 25
keV (Dennis, 1988). The expression for P may be evaluated to give

A

3 E;%™Y H(Eo/E,,§), (3.11)

P=

with
H(8) =1-F[(6+1)/2, (6—2)/2 6/% —¢77], (3.12)

where F(a,b;c; ) is Gauss’ Hypergeometric function (Abramowitz and Stegun,
1965). Equation (3.11) may be identified as containing the power injected if all
the electrons are stopped, viz. AEJ(E_E)/(é— 2}, multiplied by a factor describing
the fraction of electrons that are stopped (H). Figure 3.6 shows a plot of this

fraction, for relevant § as a function of Ey/FE.. Similar comments about the
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Figure 3.6: The fraction of electrons stopped at the loop-top, H, plotted
as a function of EofFE.. The solid curve is for § = 5, the dashed curve
¢ = 7 and the dot-dashed curve § = 9.

general behaviour of this function can be made to those following Equations (3.9)
and (3.10) above.

Equation (3.11) gives P in terms of A, which is still undetermined. Masuda
quoted the loop-top count rate in the M2 band (33-53 keV) for the Jan 13 flare
during its impulsive phase at 0.22 cts/s/SC, where SC refers to one of the 64
HXT subcollimators. The effective area of the HXT is 60 c¢cm?, so this corre-
sponds to a photon count rate of 2350 cts/s/m?. If this count rate corresponds
to fue e de, where Iy is given by Equation (3.2) then we can estimate A and
hence P by Equation (3.11). This approach does not take into account the de-
tailed instrumental response of Yohkoh (Takakura et al 1993), but is the best
estimate possible with the available data. Taking Eo = 10 keV and é = 5 we find
2x 10 W < P < 7 x 10 W, where the upper part of the range corresponds
to the larger, less dense loop-top source (n, = 10¥m™, V = 3 x 10*¥*m?). A
characteristic impulsive timescale for the flares is about a minute, implying a
total energy deposition at the loop-top in the range 1 x 10?2-4 x 10?2]. This
estimate is sensitively dependent on the cut-off energy Ey. For example, taking
FEqo =25 keV instead of Ky = 10 keV, the inferved total deposited energy is in the
range 6 x 10201 x 10% J.
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3.5.2 Comparison with the observed heating

Now let us compare the energy deposited by the energetic electrons with the
energy required to account for the heating observed by Feldman ef al. (1994). For
all the 38 flares investigated by Feldman et al., the maximum electron temperature
observed was close to T, = 2 x 10" K. This implies an energy input into the loop-
top source of order n.V 4T, and using the range of n, and V derived by Feldman
et al. we obtain the estimate of the energy going into heating the loop-top source
10'#-10%' J, where the upper estimate corresponds to a larger, less dense loop-
top region. Comparing this estimate with the previous calculation of the energy
deposited at the loop-top by the braking of electrons, clearly the Ey = 25 keV
estimate of the energy deposited may be consistent with the observed heating,
but the Ey = 10 keV estimate implies that significantly more energy is being
deposited at the loop-top by stopping electrons than appears in the heating of
the loop-top as observed by Feldman et al. This critical dependence on Eg is a
familiar problem in the context of flare electron beam energetics (Dennis, 1988).
Certainly the model provides deposition of enough energy at the loop-top by the
process of stopping electrons to account for the heating observed by Feldman et
al.

The modified model presented in §3.3.7 above is capable of producing a
smaller deposition of energy at the loop-top if a small value of f is chosen, so that
most electrons do not encounter the loop-top dense region. However, this solution
is implausible for two reasons, As discussed in §3.3.7, if f is small, the loop-top
hard X-ray source is reduced in brightness by f and the footpoint source does not
exhibit a significant break in index. The calculation of #(¢ > &) in § 3.4.5 implies
that the brightness of the loop-top region with f = 1 is qualitatively consistent
with Masuda’s observations, so f cannot be small. Also, Masuda’s spectral index
estimates {Table 3.1) do not support the prediction (valid for small f) that the
footpoint source exhibit no break in index.

Another way of resolving the possible inconsistency between the model esti-
mate of the energy deposited by electrons and the energy associated with the
observed heating is in terms of an inhomogeneous model. Specifically, suppose
that the loop-top region consists of regions of dense material embedded in less
dense plasma. The denser material is heated less rapidly as the energetic elec-
trons are stopped and because of the sensitive dependence of the response of the

SXT to temperature {T'suneta et e¢l. 1991), only the thinner material may be vis-
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ible in soft X-rays. Then the dense regions produce hard X-rays when they stop
electrons but no appreciable soft X-ray emission. The details of such a model for

the leating of the loop-top region are being investigated.

3.6 Discussion

The model developed above accounts well for some of the wealth of observational
detail provided by Yohkoh. Nevertheless, many questions remain to be answered.
The most unsatisfactory aspect of the model is the description of the dense loop-
top region and the introduction of the energetic electrons into this region. This
part of the model is consistent with the few observational details provided by
Feldman et al. (1994). However, the model does not address the deeper questions
of the mechanisms of electron acceleration and more generally, of flare energy
release. Dense coronal plasma is assumed to be located in a small region at the
loop-top at the onset of the flare. This region is presumably produced by the flare
energy release mechanism. The electrons may be accelerated in the dense region
itself, or perhaps arrive there (already energised) from above. The dense loop-top
region is rapidly heated by impinging electrons, and so should expand along field
lines. Feldman et al. reported that the impulsive soft X-ray sources observed
remained pointlike throughout the period of observation, and so a mechanism
for confinement of the heated plasma is implied. A more detailed model should
describe the physics of such a confinement process, and this will be the subject
of future work.

Masuda’s co-aligned soft and hard X-ray images appear to show a systematic
displacement of 3/10 of the observed loop-top hard X-ray sources above the loop
as outlined in soft X-ray. The best example is provided by the Jan 13 event (see
Figure 3.1; also Masuda et al. 1994). The apparent displacement of the hard X-
ray source in these instances was interpreted by Masuda (1994) to suggest flare
energy release occurring from above, The model presented her implies spatially
coincident loop-top soft and hard X-ray sources, since they arise from the inter-
action of energised electrons with the same dense region. Future observations will
confirm or deny the reality of the displacement.

One flare energy release mechanism (involving the production of a dense loop-
top region) is the theoretical model of Forbes and Malherbe (1986). Reconnection

is assumed to proceed between magnetic field lines above the loop and a wedge-
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shaped shock is produced where one reconnection jet {outflow) impinges on the
loop, near its apex. This model has not been developed enough to predict the
details of expected hard and soft X-ray emission at the loop-top. The model
developed above is compatible with Forbes and Mallierbe’s (1986) model because
it allows the possibility that electrons are energised at a remote site, say above
the loop, and then propagate along field lines to the dense loop-top regions.

As discussed above, the model may imply that more energy is deposited at
the loop-top than appears in soft X-ray, suggesting that this region may be highly
non-uniform.

The model presented here has many restrictive assumptions that should be
relaxed in a more realistic treatment. First, the change in the electron flux
spectrum described by Equation (3.1) neglects changes in average pitch angle of
the injected electrons. A more detailed description must take some account of
this process (e.g. Leach and Petrosian, 1981). Magnetic mirroring of energetic
electrons as they approach the stronger fields of the footpoints has also heen
neglected, although this may be an important aspect of the physics of electron
precipitation to the chromosphere (e.g. Melrose and White, 1981). The gradually
increasing density of the solar atmosphere with decreasing depth is treated here
as a step in density, identified with the chromospheric boundary. A more detailed

model should incorporate a better description of the solar atmosphere.

3.7 Conclusions

A simple model is presented here to account for the Yohkoh soft and hard X-
ray observations of Feldman et al. (1994) and Masuda (1994). The basis of
the model is the assumption that 10-100 keV electrons accelerated by the flare
traverse the dense, small regions observed in soft X-ray by Feldman et al. at
the apex of flaring coronal loops. The values of density and volume derived by
Feldman et al. imply that these regions present an intermediate thick-thin target
to electrons passing outwards through them. Specifically, the regions represent
a column depth 10¥* m=% < Np < 7 x 10**m~? and are thick (thin) targets to
electrons with energy much less (greater) than £, = (X No)7, with 15keV <
E. < 40keV. A fraction of the accelerated electrons are stopped in the dense
loop-top region, leading to heating of the loop-top region and production of hard

X-rays via bremsstrahlung. The loop-top soft X-ray source is identified as a
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region of dense coronal material, which is present at the flare onset and which is
heated in situ by energetic electrons impinginug on it. This is in contrast to
‘chromospheric evaporation’ models in which the coronal soft X-ray emission
is attributed to chromospheric material evaporated into the coronal loop from
its footpoints. Coincident soft and hard X-ray flare observations favour in situ
heating over evaporation (Feldman, 1990).

Adopting a simple model for the way in which electrons lose energy in precipi-
tating to the footpoints, theoretical individual hard X-ray spectra are derived for
the loop-top dense region, the thick-target sources at the [ootpoints of the loop,
and the thin-target region between loop-top and lootpoints. The model loop-top
and footpoint spectra are compared with the spectral estimates of Masuda, and
the simple model is found to agree qualitatively with the data, although there
are individual discrepancies. In particular, the model accounts naturally for the
observed steepening in the spectral indices of both loop-top and footpoint sources
between 14 keV and 53 keV, and predicts that there is no corresponding steep-
ening in the spectral index of the sum of the loop-top and footpoint sources.
The model also provides an explanation for Masuda’s Type A or “super-hot”
flare observation of 92/02/06, when a loop-top hard X-ray source was seen with
no corresponding footpoint emission. If the injected electron spectrum at the
loop-top is steep enough, and/or the column depth of the loop-top region is large
enough, almost all the electrons are stopped at the loop-top, leading to only a
loop-top source. More generally, the model spectra plausibly account for the
observed relative brightnesses of the footpoint and loop-top sources. They also
suggest an independent observational method of determining F., as the photon
energy at which the loop-top and footpoint sources are equally bright.

The model allows the calculation of the energy deposited in the dense loop-top
region by the braking of electrons. This is compared with the heating observed by
Feldman et al. and the model implies that (at least) enough energy is deposited
at the loop-top to account for the lieating observed in soft X-ray. Depending on
the (observationally poorly constrained)} choice of the low energy cut-off to the
electron spectrum, it is possible that significantly more energy is deposited at the
loop-top than appears in soft X-ray. This discrepancy, if real, may suggest that
the loop-top region is highly inliomogeneous. If the loop-top region consists of
dense material embedded in less dense material, the energy deposited in the dense

material may raise its temperature less than if the same energy were deposited in
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the less dense material. Hence the energy deposited in the dense material does
not appear in soft X-ray.

In conclusion, our model qualitatively accounts for some details of recent
Yohkoh hard and soft X-ray flare observations. The model is, however, clearly
oversimplified and in particular does not address the central question of the mech-
anism of solar flare energy release. Further work, directed towards accounting for
the details of the loop-top X-ray sources observed by Masuda may shed some

light on this deeper problem.
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3.8 APPENDIX

3.8.1 Derivation of Equations (3.2)—(3.5)

The treatment given in this section follows Brown and McClymont (1975), but
has been repeated to clarify an error in that paper, as indicated below.

The direction integrated photon spectrum, I{g), from an unresolved source of
volume V is given by (Brown, 1975)

o0 nb
iR (e) = ] [ fv ne(r)-iil—E(E,r)d:*r Q.(E)(E) dE, (3.13)

where n.(r) is the ambient number density at a point r in the source, dn®(E,r)/dE
is the beam number density per unit electron energy, I, at the point r, Q.(£) is
the direction integrated cross section for bremmstrahlung emission, and v(E) is
the velocity of an electron of energy K. We assume that the X-ray emitting region

is optically thin, which is valid for n, < 102 m™3,

a condition that is certainly
always met in the chromosphere and corona (Brown, 1971). The cross section
2:(F) in Equation (3.13) is differential in photon energy € (so its units are area
per unit photon energy). For the energy range of interest in solar flare hard
X-ray emission (< 100 keV), an approximate cross section for bremsstrahlung is

provided by the non-relativistic Bethe-Heitler formula (Jackson, 1962), viz.

Q..;(E) _ E};ZIEZQ lnl + \/1 - E/E’ (3.14)
1—-+/1—-¢/E

where Z is the average atomic number of the ambient plasma, and kgyr =

8 argm.c?[3, with ry being the classical radius of the electron and « the fine
structure constant. Note that, for £ less than F, Q.(F) is zero; an electron of a
particular energy cannot produce a photon of greater energy.

Most theoretical descriptions of solar flare hard X-ray emission have taken
the Bethe-Heitler formula as a starting point (e.g. Lin and Hudson, 1971; Brown,
1971; Brown, 1975; Brown and McClymont, 1875), although simpler forms have
also been used (e.g. Emslie and Machado, 1987). Whilst the Bethe-Heitler for-
mula is a convenient theoretical tool (it represents the most complex cross section
for which analytic descriptions of X-ray emission are possible), it is worthwhile
to remember its shortcomings. States of polarisation and direction of the emitted
photons have already been summed and integrated over respectively, so Equa-

tion (3.14) affords no information on the polarisation and directivity of the pho-
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ton emission. Various authors have counsidered these questions (e.g. Brown, 1972;
Brown, 1975; Leach and Petrosian, 1983), Polarimetry measurements hold the
promise of distinguishing between thermal and non-thermal models for hard X-
ray emission, because a directed beamn ol electrons produces polarised emission,
whereas a uniform hot plasma does not. Unfortunately, uncertainties in mea-
surements to date have been too large to draw useful conclusions from the data
(Dennis, 1988). More definitive measurements present a challenge to instrument
design. The discussion of solar flare X-ray emission presented above neglects the
questions of polarisation and direction dependence of emission.

We assume axisymmetry of the electron beam, so that dn®(F,r)/dE depends
only on the coordinate z, and for simplicity consider a source in which the ambient
number density, n., is constant. The the column depth of the source, N = n.z,
provides a coordinate to describe the beam, The flux spectrum at depth NV of the
beam, F(E, N) (as defined above), is given by dn®(E, N)/dE = F(E,N)/Sv(E).
Equation (3.13) can then be rewritten to describe the differential emission along

the beam:
dl 1

AN ~ 1z R?
Substituting Equation (3.1) with the initial lux spectrum Fo(E) = AE~? into

Equation (3.15) and changing the variable of integration to @ = ¢/F, we obtain

f " P(E, N)Q.(E) dE. (3.15)

j—ir - ’Zﬂﬁ—]’fs-(ﬁ+l> [) Lot (14 2k Na?)e) Y foyde,  (3.06)
where f(z) = In[(1 + /1 —=2)/(1 — V1 —=2)]. Equation (3.16) has a difference
in exponent in the integrand to the corresponding expression deduced by Brown
and McClymont (1975).

Thin-target behaviour can be derived from Equation (3.16) by expanding the
integrand in small K N/e? and then integrating the result with respect to V.
Keeping only the term of order [V, the result is

_ AwsrZ®N B(4,3) £+

Ithin(s) = 4TFR2 S (317)

where B(p,q) = ['(p}l'(¢)/T(p+¢) is the Beta function (Abramowitz and Stegun,
1965). Equation (3.17) is the usual thin-target formnla (Brown, 1971).

The photon spectrum from a source of arbitrary column depth, say Ny, is
obtained by integrating Equation (3.16) from N = 0 to N = Np. The result is

Equations (3.2)—(3.5). In the limit Ny — oo, thick-target behaviour is returned,
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viz. Equation (3.3). This limit is important because it relies on the exponent in
Equation (3.16) and establishes that Brown and McClymont’s {1975) result is in

€rror.

3.8.2 Derivation of Equations (3.6) and (3.7)

As explained above, the electron flux spectrum everywhere between the loop-top
and footpoints is assumed to be F(FE, Ny), where F' is given by Equation (3.1),
and Fy(E) = AE~%. Substituting this flux spectrum into Equation (3.15) and in-
tegrating with respect to N (the integrand is independent of N under the present
assumptions) from N = 0 to N = N, gives Equations (3.6) and (3.7).
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Chapter 4

Cross-field current closure below

the solar photosphere

Abstract: A simple, two-dimensional model is developed to describe how an externally
imposed current closes as a function of time below the photosphere. A vertical current
density is assumed to turn on at the photospheric boundary, such that the current is
directed vertically into the photosphere in one half of the photospheric boundary, and
vertically out in the other half. The model implies that the closure of the current in the
subphotosphere depends only on the inagnetic Reynolds number Ry, which may be
expressed in the ratio Ry = R4/ R, where R4 = povy is the Alfvénic impedance of the
photosphere and R = 1/op{ is the resistance corresponding to the conductivity op and
a characteristic length !, For ltp; > 1, current closure occurs at a {ront, propagating
with the Alfvén speed. For Rps < 1, current closure is a diffusive process ahead and
behind a slowly propagating Alfvénic front, The first case is the relevant one for the
Sun, where s = 108/v4, for v, in kilometres per second.

The model implies that the boundary condition of ‘line-tying,” often imposed to
describe the behaviour of plasma and fields at the photospheric boundary, is only valid
for the Alfvén transit time of any given layer of the solar atmosphere. The consequences

for the dynamics of coronal magnetic structures are explored.
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4.1 Introduction

The question of what happens to currents that flow in the corona as they reach
the photosphere is a controversial one in solar physics. Vector magnetogram data'
typically show regions of strong current (= 1012 A) flowing into the photosphere
in a region of one magnetic polarity and out of the photosphere in an adjacent
region of opposite polarity (Moreton and Severny, 1968; Krall et al. 1982; Ding
et al. 1987; Lin and Gaizauskas, 1987; Hagyard, 1988; Romanov and Tsap, 1990;
Canfield ef al. 1993; Leka ef al. 1993; de La Beaujardiere ef al. 1993). This is
interpreted as a photospheric cross-section of a coronal magnetic loop carrying
an unneutralized axial current (Melrose, 1991), although a contrary opinion was
expressed by Wilkinson et al. (1992). The current is assumed to be field-aligned
in the coronal part of the loop, where gas pressure is negligible. The behaviour of
this current below the photosphere — in particular whether it closes across field
lines there — is open to question. Some authors (Hudson, 1987; McClymont and
Fisher, 1989; Melrose, 1991) claimed that the observed currents flow through the
subphotosphere along field lines, coupling the corona to the deep interior of the
Sun. Other authors (e.g. Kan et al. 1983) argued that the large scale currents
observed (which are associated with solar flares) are generated at the photo-
sphere by fluid motions: the so-called photospheric dynamo. A third possibility
is implicit in a wide class of models for coronal structures in which the boundary
condition at the photosphere is taken to be the ‘line-tying’ assumption (Van Tend
and Kuperus, 1978; Priest, 1982; Bray et al. 1991). As shown below, line-tying
implies that coronal currents close in the photospheric boundary, independent of
background magnetic field lines, an implication incompatible with the properties
of the photosphere.

We consider a simple model for the dynamic response of the subphotospheric
plasma to a current imposed from above. The objective 1s to determine the
conditions under which the imposed current closes across field lines locally in the
photosphere (as implied by the line-tying assumption) and when closure occurs far
below the photosphere (as argued by Hudson, 1987). Our approach is to assume a
two-dimensional, constant density, isotropically conducting photosphere threaded
by a vertical, uniform magnetic field. The photosphere occupies the plane z > 0

(no variation is permitted in y) and a vertical current density J, is assumed to

1See §1.2.2 of chapter 1.
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turn on in the photospheric boundary at a particular time (¢ = 0), introducing
a total current /gy into the subphotospliere. This current must close across field
lines in the model subphotosphere for all later times. The problem posed is the
specification of J; and J, for all z, 2 and ¢ > 0, which completely describes how
the current closes.

The assumption that coronal magnetic structures are line-tied at the solar pho-
tosphere implies that magnetic field lines joining the photosphere to the corona
are frozen-in to the subphotospheric plasma and so are fixed immovably there by
the inertia of the denser plasma below. Line-tying implicitly requires that coronal
currents close across field lines, as surface currents in the photospheric boundary.
For example, consider a coronal arcade, subject to a shear. If the magnetic field
at one line of footpoints of the arcade is assumed to be initially vertical at the
photosphere (of magnitude By, say), then line-tying implies that after shearing,
a kink appears in the field lines there. This kink implies a non-zero V X B at the
photosphere, and hence a non-zero surface current there. Specifically, if the kink
is a departure § from the vertical, then a surface current By tan 8/po must flow,
perpendicular to the plane of the kinked field.

The surface current implied by line-tying must be set up by a sequence of
events in which a coronal current is imposed on the photospheric boundary. To
understand this point, consider Iigure 4.1. A shear imposed at one row of foot-
points of a coronal arcade drives a current along the coronal field lines of the
arcade. If the photospheric motion is slow compared with the Alfvén propa-
gation time in the corona, the shearing of the arcade may be considered as a
sequence of magnetostatic equilibrium states in which the footpoints of the ar-
cade are successively displaced (e.g. Low, 1977; Priest, 1982; Finn and Chen,
1990). Each equilibrium state in the sequence has a greater field-aligned current
flowing in the coronal part of the arcade, and closing (because of line-tying) in
the photospheric boundary at the passive footpoint. This cross-field boundary
current must be set up as the magnetostatic response of the passive footpoint to
an increased current density arriving from above, along the field lines.

A second example of the line-tying assumption is provided by Kuperus and
Raadu’s (1974) model for the support of prominences. Figure 4.2 shows the
model, in which a current-carrying filament is introduced into the corona and in-
duces surface currents in the photospheric boundary, because of line-tying. The

induced currents support the filament through current-current interaction. The
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Figure 4.1 A theoretical model for the shearing of one side of a coronal
arcade. In (a), the arcade is shown before any shearing: the open arrow
heads denote the direction of the field. The photospheric boundary is the
plane shown. In (b), the arcade is subject to a shearing velocity field in
the photosphere at the right hand row of footpoints, This plasma motion
drives a current in the photospheric boundary that flows along the magnetic
field over the arch of the arcade, The current is denoted by the closed
arrowheads of the figure. The line-tying boundary condition implies that
this current closes across field lines at the passive row of footpoints, as
shown,
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initial (pre-filament) magnetic field is predominantly vertical at the photosphere
and so current closure there must occur perpendicular to the magnetic field.
The surface current induced at the photospheric boundary is the closure cur-
rent for the coronal filament current, set up after the filament is introduced (e.g.
Martens, 1987). Variants of the model have been proposed (Van Tend and Ku-
perns, 1978: Lerche and Low, 1980; Martens, 1987; Martens and Kuin, 1989;
Priest and Forbes, 1990), and all rely on the same assumption about the photo-
sphere. The model developed here tests the validity of the line-tying assumption
at tlie photosphere by considering the vesponse of the subphotosphere to currents

imposed from above.
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Figure 4.2: Kuperus and Raadu’s {1974) model for the support of a current-
carrying filament introduced into the solar atmosphere. The line-tying
boundary condition is assumed to prevent the field of the introduced fila-
ment from crossing the photospheric boundary. This is modelled by placing
an image filament below the solar photosphere, as shown. In the figure,
only the magnetic field of the filament and its iinage are shown. The am-
bient magnetic field (not shown) is predominautly vertical. It is implicit
in this model that electric currents can flow arbitrarily in the photospheric
boundary.

This chapter is divided as follows. In §4.2 a simple description of current clo-
sure in a model photosphere is presented, which becomes the basis in §4.3 for a
model] of the response of the subpliotosphere to a cnrrent applied from above. The
various limiting cases in which analytical solutions to the model exist are inves-
tigated in §4.4, The general case requires numerical solution, which is discussed

in §4.5, together with the consequences of the model for solar parameters, The
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main results of the model are summarised in §4.6. In §4.7, the question of how
the imposed current density appears in the photospheric boundary is addressed.
§4.8 presents a simple model for the shearing of a coronal arcade consistent with
the conclusions of the model (§4.6) developed to describe current closure in the
subphotosphere. The details of various derivations have been relegated to the

Appendix, §4.10,

4.2 Description of subphotospheric currents

Consider the following two-dimensional (8/8y = 0) forms for fluid velocity and

magnetic field, respectively, in a model photosphere (Scholer, 1970):
v = [0,v,(2,2,1),0], B =][0,B,(z,z21),B.(x)]. (4.1)

The photosphere is assumed to occupy the half-space z > 0, threaded by a
background field B,(2). For the purposes of the model we consider only those
cases where B? is constant. Two specific cases of interest are B, = By and also

the simple form
By ilz>0,

4.2
_B, ifx<0, (4.2)

a0 |

representing an idealised photospheric field with a neutral {or inversion) line.
These two choices are shown in Figure 4.3. The geometry adopted implies cross-
field and parallel current densities

J:i(_aBy 0 8By). (4.3)

Ho gz’ ' oz

The photosphere is modelled here as a single resistive fluid with isotropic

conductivity op. The simple Olum’s law
J:JP(E-I-V x B), (4.4)

is assumed to apply, where E is the electric field present. The use of Equation (4.4)
15 discussed in the Appendix to this chapter (§4.10.1).
Assuming also a constant-density photosphere, Maxwell’s equations and the

fluid equation of motion imply the pressure balance

p=po— B} /20 (4.5)
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Figure 4.3: The geometry of the simple model photosphere considered, with
two possible field configurations. In the upper picture the background field
is uniform and in the lower picture it is oppositely directed in z > 0 and
z <0.
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and the partial differential equation for the magnetic field

B, ,0°B, 10 (azﬂy aﬁBy) s

oz~ Aoz 4Ot \ Oz? 0z? (4.6)

where vy = B()/([.l[)pg)% is the Alfvén speed and v = poop. The components
of the current density obey the same partial differential equation and may be
obtained from Equation (4.3). Equation (4.6) has been discussed by Alfvén and
Filthammar (1963), and is derived in the Appendix to this chapter (§4.10.1).
Several restrictive assumptions are adopted in the derivation of Equation (4.6)
which require comment. The restrictive geometry adopted allows only transverse
perturbations of the subphotosphere. Together with the assumption of constant
density, this means that only transverse Alfvén waves are considered. These pro-
vide the mechanism of dynamic current closure. The role of magneto-acoustic
waves is ignored. The stratification of the solar atmosphere is also neglected for
simplicity: this is also not expected to influence the basic results presented. In-
homogeneities in the subphotospheric magnetic field are also neglected. A more
sophisticated treatment would consider the role of variations in the magnetic
field. The subphotosphere is assumed to be isotropically conducting. In fact, the
subphotosphere is a partially ionised gas, with a significantly anisotropic conduc-
tivity (Khan, 1989). The simplest magnetohydrodynamic (MHD) description of
the conductivity of the subphotosphere must involve a Hall current (with corre-
sponding conductivity o) in addition to the Pederson current described here by
op (Krall and Trivelpiece, 1973). The neglect of the Hall term is consistent with
the neglect of J,, as discussed in the Appendix to this chapter (§4.10.1). Both

would need to be considered in a more general model.

4.3 Model for response of the subphotosphere

to a current imposed from above

A solution to Equation (4.6) in the half space z > 0 is presented below, subject

to the boundary condition

e,z =0,0) = [(2)0(), (4.7)
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where (¢) is the step function. The initial conditions assumed are those appro-
priate to Laplace transtorm problems,

L - 0. (4.8)

Jz(;?:,z,t=0): ot =
t=0

FEquation (4.7) prescribes a vertical current density f(z) in the photospheric
boundary for ¢ > 0. This function is assumed to be odd in z, so that cur-
rent enters the half-space z > 0 in the half-plane z = 0, > 0 and leaves in

z =0, 2 <0. A total current [ flows in the photosphere for ¢ > 0, defined by:

= [T @)=~ [ Dm da' (). (4.9)

This current must close across field lines in the photosphere.

The equivalent boundary and initial conditions on B, are, respectively,

B,(x,2 = 0,1) = jod(2)0(1) (4.10)
and 9B
By(z,2,t =0) = B, 0, (4.11)
with
Hz) = ]_ da (@), (4.12)

The lower limit in Equation (4.12) is determined by the requirement that B,

approaches zero for large 2. A simple choice of f(2) is the delta function profile
fla) = L |§(z — x) — 8(a + )], (4.13)

which implies

_'IO if ,fL'I L o,

#(z) = { (4.14)

This choice corresponds to a current sheet directed into the model photosphere

0 otherwise.

at * = 29 and out at ¥ = —azy. The delta function choice is considered here,
along with the general case.

In the Appendix to this chapter (§4.10.2) it is shown that the Laplace trans-
form of the solution to Equation (4.6) subject to these boundary and initial

conditions is

By(mrers) = 2222 (1)} 2 g ((rslots® 4 2 - 7))

—2, (415
- 022 + (2 — £)2)° )
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with
S

s+ yvi
and where I, is the modified Bessel function of the second kind (Abramowitz
and Stegun, 1965).

In general, Equation (4.15) does not correspond to a tabulated Laplace trans-

2

(4.16)

form (e.g. Erdélyi ef al. 1954). Various limiting cases permit inversion of this
transform and these are investigated below. Consider first, however, the total
current crossing the plane z = 0. It is straightforward to verify from Equa-
tion (4.15) that this quantity is —/p, as is required by continuity of current. To
describe where cross-field current closure occurs in this model photosphere for
t > 0, it is only necessary to obtain the current density J, in the plane x = 0,
rather than considering J, everywhere in z > 0.

An alternative way to characterise how the current closes in general is to

consider the total current closing in the plane 2 = 0 above a height z = At
1
Ii(ht) = -1y — —B,{¢ =0,2 = h,1). (4.17)
Ko

This quantity decreases from zero at i = 0 to approach —I asymptotically as A

tends to infinity.

4.4 Limiting cases

Various limiting cases provide insight into the general behaviour of the model,

4.4.1 Infinite conductivity (y — o0)

In the limit 4+ — oo, Equation (4.6) becomes the one-dimensional wave equation.

In the Appendix to this chapter (§4.10.3) it is shown from Equation (4.15) that

lim B,(z,2,s) = %ﬂ¢(m)exP(—sz/vA), (4.18)

o0

which yields the solution to the wave equation

lim B,(z,z2,t) = pod(x)0(t — 2/va). (4.19)

Yo

Denoting this limit ‘P’ (for propagating), the corresponding current densities are

JP (2, 2,1) = #(2) S(t— zfva) (4.20)

V4
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and

JP(z,2,) = f(2)0(t— zfva). (4.21)
The interpretation of Equations (4.20) and (4.21) is that current closure occurs
at an Alfvénic front propagating into the photosphere. In the plane @ = 0, the
cross-field current is

JP(0 = 0,2,0) = =226 (1 = 2/u4), (4.22)
v

so in the absence of diffusion, a propagating delta function of cross-field current

is seen in the plane of symmetry of the model.

4.4.2 Zero Alfvén speed (vyg — 0)

In the limit of zero Alfvén speed, Iiquation (4.6) becomes the two-dimensional

diffusion equation. Denoting this limit ‘D’ (for diffusive), Equation (4.15) be-

cOomes
BP(z,2,3) :vlir_IPOBy(a:,z,s)
b I (sl + (o - 7))
Moz ()2
=22 ()7 [ e gie) e e

which can be inverted (Erdélyi et al. 1954) to give the classical Green’s function
solution to the diffusion equation (Morse and Feshbach, 1953)

BP(e,28) = 102 [" ag FEL__ :iff)_ o {~L2+@-er]} w2

It is straightforward to write down J? and JP from Equation (4.24) using
Equation (4.3) but here note only that the cross-field current in the plane z =0

18

JP(z=0,2,1) = %]ﬂm d€ $(¢)
[ - G [ wa

Figure 4.4 illustrates this current density for the delta function choice of f(z),
Equation (4.13). Ast — oo it approaches the asymptotic form
210&'0

— . 4.26
7 (a3 + 22) (4.26)

Jf(:r;'——(],z,tqoo):_
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Figure 4.4: The scaled current density JP{2 = 0, z,2)/(Io/!) as a function
of scaled distance into the photosphere for one diffusive timescale, and in
the steady state limit of an infinite number of such timescales. The dashed
curve is the asymptotic case.

In this limit, cross-field current closure occurs for all relevant timescales in a
region just below the photospheric boundary. Figure 4.5 shows the vector field of
current density (JID, Jf) in the limit ¢ — oco. This behaviour is consistent with
Kuperus and Raadu’s (1974) model for support of current-carrying filaments.
However, as discussed below, the solar behaviour is much closer to the limit of

infinite conductivity than that of zero Alfvén speed.

4.4.3 Steady state (t — )

The asymptotic time behaviour of Equation (4.6) can be obtained directly by
setting @/t to zero, or more formally by evaluating lim,_o s53,(z, z,s) using
Equation (4.15). The behaviour of the system depends only on whether the
Alfvén speed is zero or not.

If v4 = 0, setting d/38¢ to zero in Equation (4.6) gives the Poisson equation,
which may be solved subject to the boundary conditions. Alternatively, the

behaviour is described by Equation (4.24) in the limit { — oo, l.e.

Bf(m,z,t — 00) = %ﬁ Lz dé ﬁ(f?——‘f)? (4.27)

The cross-field current density in the plane of symmetry of the model correspond-
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Figure 4.5: The vector field ol the current density (Jf, J,P) in the asymp-
totic limit (¢ — co). For simplicity, 2o = 1 has been chosen.

ing to this field is

9 roo
JP(2=0,2,t = 00) = —;/0 dé ;;f_}(_?z (4.28)

Equation (4.26) gives the cross-field current in the plane x = 0 when the delta

function choice of f(¢) is made.
If va # 0 then taking lim,_o sB,(z, 2, s) using Equation (4.15) gives

Jim By(z,z,t) = f(z), (4.29)
implying
!Iim Je(z,2,8) =0 (4.30)
and
tlim J. = f(a). (4.31)

Equations (4.30) and (4.31) imply that, for non-zero Alfvén speed, there are
no cross-field currents in the model photosphere in the static limit. The physical
interpretation of this result is that whenever the Alfvén speed is non-zero, a

cross-field current density J, implies a force density J, x B which launches an
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Alfvén wave to propagate the stress away. So in the static limit in any layer of
the atmosphere, the cross-field current density must be zero. Zero Alfvén speed
corresponds to an unmagnetised plasma, or an infinitely dense plasma. In either
case, Alfvén waves cannot propagate to remove the stress implied by a cross-field
current density.

Two other limits are of physical interest and are mentioned briefly here.
The first is that of zero conductivity, v — 0. In this limit the vy = 0 steady
state (Equation (4.27)) is achieved immediately at ¢ = 0, because the diffusive
timescale {2 is zero. Similarly, in the limit of infinite Alfvén speed (v4 — o),
the vy # 0 steady state, i.e. Equation (4.29) is achieved instantly because the

Alfvén timescale is zero in this limit.

4.4.4 An approximation valid for large conductivity

Consider the specific choice for f(z) defined by Equation (4.13). In the limit of
infinite conductivity, the cross-field current in the plane z = 0 is J¥(z = 0, 2,1),
given by Equation (4.22). This expression is independent of zo (in contrast, for
example with the corresponding expression when v,y = 0, Equation (4.26)). This
suggests that for large but finite v, Jo(z = 0,2,¢) does not depend strongly on
the choice of 2. Taking the limit 25 — co in Equation (4.15) allows the integral
to be performed (Gradshteyn and Ryzhik, 1980), with the result

1
Ey(:c =0,z,38) = _tolo exp [__’y__sz_} . (4.32)
§ (s + 7v})

™

The cross-field current implied by this magnetic field is

1
782
7—4 . (4.33)

7%10 [
T &Xp | — T
(s +~v3)? (s + v

(e =0,2,8) = —

Fven these simpler forms cannot be analytically inverted, except in the limit

v — oo and at z = 0, when for example the cross-field current density becomes

1
Je(z2=0,2=0,t) = -] (1) ! exp (—wfit) . (4.34)

7t

This expression shows that there is no significant current density in the photo-

spheric boundary in this limit for large time.
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4.5 The general case

In the general case, Equation (4.15) must be inverted numerically, since expan-
sions in ¥ and v, about the limits previously considered (§§4.1-4.3) are not
possible. It is appropriate at this point to discuss a formal scaling procedure.

By introducing the scaled variables
t=t/r, z=2z/l, #=2zfl, B, = B,/DBy, (4.35)

where 7 and ! are as yet undefined scale parameters, Equation {4.6) becomes

2B, @B, 9 (B, 0B,
7 _ —ep— | —2 4+ =FH 1 =0 4.36
gz "o Ph\aar T o )T (4:36)
Here the coefficients are
2.2
__UAT . T
P == and ¢p = el (4.37)

The relative sizes of ¢p and ¢p determine whether Equation (4.6) behaves like the
wave equation or the diffusion equation. In particular, the ratio ¢p/cp determines
the qualitative behaviour. Taking {without loss of generality) 7 equal to the
Alfvén transit time for the characteristic length [ gives ep =1 and ¢p = 1/yv4l,
so the ratio of coeflicients is

cp

o = val = B, (4.38)
where Rps is the magnetic Reynolds number of the subphotosphere. It is infor-
mative to write Ry = R4/R, where R, = pova is the Alfvénic impedance and
R = 1/opl is the resistance corresponding to the conductivity op. This shows
that the behaviour of the model depends only on the ratio R,/R.

The delta function choice of f(x) is adopted in this section. The current
deunsity is scaled so that J; = J;/(Ip/!) and also the distance z is taken to be !/
for simplicity.

Davies (1978) provides the method for numerical inversion of the Laplace
transform used here. A general discussion of approximate methods for inverting
Laplace transforms, including Davies’ can be found in Cheng et al. (1994). The

quantity to be inverted is

o % /RyNE 18 AKI{[R\«IS(&E?JF{?)];’}
E[x(w-—-l),z,ﬂ]:——-(—ﬂ) jo dgﬁz (@232 + £2)7

Fis 3
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Figure 4.6: J,(x = 0,2,8)/(Lo/!) for the case Rpr = 10 when t = 1 (solid
curve) and ¥ = 2 (dashed curve), Le. at one and two Alfvén transit times,
The propagating term of Equation (4.6) is dominant in this case,

where

3
Y = . 4.40
YT + Ras (4.40)

Figure 4.6 is a plot of the cross-field current density at one and two Alfvén
transit times when Rp = 10. The perpendicular current propagates as a spread-
ing pulse symmetrically around z = va¢. This example is close to the propagat-
ing, or infinite conductivity limit of §4.4.1. It can also be used to test the large
conductivity approximation presented in §4.4.4. Figure 4.7 is a plot of the nu-
merical approximation to Equation (4.39) together with the approximate inverse
of Equation (4.15) for the case Ry = 10 at one Alfvén transit time. The large
conductivity approximation is shiown to be an excellent approximation for this
value of Ras.

The second example considered is the intermediate case Ryy = 1, where both
the propagating and diffusive terms of the Equation (4.6) are influential. Fig-
ure 4.8 shows that a peak in current density propagates but lags behind z = vt
and the behaviour has more in common with the diffusive limit of §4.4.2 than
the previous example.

Figure 4.9 is for Ras = 1/10, close to the diffusive limit of §4.4.2, Current
closure occurs in the first few characteristic lengths below the photosphere for

many Alfvén transit times. I'or times less than an Alfvén transit time, but greater
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Figure 4.7: The cross-field current density J.(z = 0, 2, t)/(Ip/!) for the case
Ry = 10 at ¢ = 1 calculated using the approximate (large conductivity)
expression Equation (4.33), and also the ‘exact’ expression Equation (4.15).
The current density derived from the exact expression is shown as a solid
curve and that derived from the approximate expression as a dashed curve,
although they agree alinost to within the thickness of the line.
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Figure 4.8: J;(z = 0, z,1)/(Io/l) for the case Rpar = 1 at one (solid curve),
two (dashed curve) and three (dot-dashed curve) Afvén transit times.

78




current density

0 > 4 6 8
z/1

Figure 4.9: Scaled current deusity J.(x = 0, z,¢}/({o/!) in the photosphere
at one (solid curve) and twenty (dashed curve) Alfvén times for the case
Rar = 0.1, The diffusive term of equation (6) is dominant in this instance.

than the diffusive timescale, the asymptotic diffusive behaviour of Equation (4.26)
is established ahead of z = v,t.

In Figure 4.10, the fraction of current closing in the first characteristic length
below the photosphere, I, (I,1), is shown, at two and four Alfvén transit times
(t = 2,4 respectively) as a function of the magnetic Reynolds number Ry =
Ra/R. The quantity I, is defined by Equation (4.17) above. For small Ry,
the behaviour is diffusive and substantial cross-field closure occurs just below the
photospheric boundary. (It follows from Equation (4.24) that the value 1/2 is
expected when Hps = 0, as seen in the figure.) For large Rps the behaviour is
propagating and after several Alfvén times there is no appreciable current closing
in the region of interest.

The typical solar value taken here is £,/ R & 10®/v,4, where v, is in kilometres
per second, corresponding to a characteristic length = 1 Mm (I(han 1989). For
reasonable values of the photospheric Alfvén speed, this implies a behaviour close
to the infinite conductivity limit of §4.4.1. Imposed currents which turn on in
the photosphere close at an Alfvénic front propagating into the subphotosphere,
with only weak diffusion of cross-field current density about z = v4t.

For solar parameters (R4/R = 10%), Equation (4.17) (see also Figure 4.10)

implies that after two Alfvén transit times, the fraction of current closing in the
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current

Figure 4.10: The fraction of the total current I closing in the first charac-
teristic length ! below the photospheric boundary as a function of the mag-
netic Reynolds number Eas at two (solid curve) and four (dashed curve)
Alfvén transit times of /.

first characteristic length below the photospheric boundary is of order several
percent. So the cross-field current has propagated out of the region of interest in

a brief time.

4.6 Discussion

In the sections above, a simple model is formulated to describe the time-dependent
response of the subphotospheric plasma to a current imposed from above. The

main results may be summarised as follows:

1. Cross-field current closure in the photosphere is a dynamic process. The
stress implied by a cross-field current density J, is propagated away by

Alfvén waves.

2. In the static limit, currents imposed along field lines at the photospheric

boundary flow along field lines below the photosphere.

3. The time evolution of cross-field current closure in the model depends only
on the magnetic Reynolds number Ry, which may be written as the ratio

Rur = Ra/R, where R4y = pov, is the Alfvénic impedance and R = 1/op!
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is the resistance corresponding to the conductivity ¢p and the characteristic
length {. For Ry > 1, current closure occurs at an Alfvénic front propa-
gating into the photosphere, with only weak diffusion about the front. For
Ry < 1, current closure is a diffusive process, with cross-field currents

flowing just below the photosphere for many Alfvén times.

4. Solar parameters imply Far > 1. So after several Alfvén times, current

closure occurs deep in the photosphere.

These results imply that the line-tying assumption is valid only on a timescale
of order the Alfvén transit time of a given layer of the subphotosphere. Models
of coronal magnetic structures based on line-tying at the photosphere need to be

reconsidered in this light.

4.7 Line-tying revisited

The model presented in §§4.3-4.5 above assumes a prescribed current density
appears in the photospheric boundary at a particular time. A weakness of the
model is that it does not describe how that current density is produced, or arrives
at the photospheric boundary. Implicitly, the cross-field current density which
closes the imposed current density must propagate from above, along field lines to
the photosphere, This is relevant to describe the process of ‘shearing’ a coronal
magnetic arcade — introduced in §4.1 above — for example. Assuming the
region above the photosphere is perfectly conducting, the cross-field closure of the
current before it arrives at the photosphere must occur in a propagating Alfvénic
front. Behind that front, plasma is set into motion. Fquivalently, the passage
of the front establishes an electric field. The current density that appears in the
boundary is the result of the reflection of the electric field of the incident front
from the photospheric boundary. In this section the existing model is modified
to describe the arrival of such a front, and its reflection from the photospheric
boundary. The line-tying boundary condition is tested by the model, and found
to be an inaccurate description of the behaviour of fields and plasma at the

photospheric boundary.
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4.7.1 A reflection coefficient for the photosphere

For simplicity, the corona-cliromosphere/photosphere trausition is modelled by
two adjacent, uniform regions with an abrupt change in density and conductivity
at the boundary. The corona is described by region ‘I’, a perfectly conducting
fluid occupying z < 0 with Alfvén speed v,4;. The chromosphere/subphotosphere
is modelled by region ‘2’ (z > 0), where the conductivity has the finite value op
and the Alfvén speed has the value v42 (vaz € va). Hereafter, for simplicity
region ‘2’ is referred to as the subphotosphere. Both regions are assumed to
be threaded by a uniform background magnetic field of magnitude By in the z-
direction. A one-dimensional model for the reflection of a perturbation incident
on the z = 0 boundary from z < 0 is considered, in which d/0z = d/dy = 0.
Assuming transverse, incompressible perturbations of the model atmosphere, the
velocity v&”(z, t) in the subphotosphere satisfies the partial differential equation
9*{?) e e ~ la%f) _
ot? AT 922 4 9tOF? ’

(4.41)

where ¥ = poop. In the coronal region, the velocity is vL”(z,t), which satisfies
the wave equation 9?v{1/dt? — v3,8%0{V /2% = 0.

The Laplace transform of the solution to Equation (4.41), subject to the initial

conditions
) Q)
VP (z,t =0) = =Y =0, (4.42)
4 at =0
and assuming the velocity perturbations are bounded at infinity, is
Af
59(2,) = 2 exp [-as) 2], (1.49)

s
where a? = yso? aud of = 3/(s +vv%,). Equation (4.43) does not correspond to
a tabulated Laplace transform.

The question to be resolved is the response of the system to the arrival of
a velocity disturbance originating in the corona. Ifor simplicity, assume that an
Alfvénic front propagates towards z = 0, carrying behind it a constant velocity
vo, so that the front arrives at the origin at ¢ = 0. (This is appropriate if, for
instance, the coronal field lines are being driven at a constant velocity at z = —oo,
and the inertia of the coronal plasma is ignored.) Then the velocity of the plasma
in z < 0 following the arrival of the front at the photospheric boundary can be

written
vl(,”(z,t) =vo + [g(t + z/vay) — vo] O(¢t + 2/v.1), (4.44)
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where g(t + z/va1) describes the reflection of the incident disturbance from the

photospheric boundary. Laplace transforming Equation (4.44) gives
52 (z,5) = vo/s + [§(s) — vo/s| exp (s2/v.1). (4.45)

The magnetic fields corresponding to the (Laplace transformed) velocities
(4.45) and (4.43) are obtained from the y-component of the momentum equation,
Equation (4.92) in the Appendix, which is valid whether op is finite or not.

Laplace transforming FEquation (4.92) gives

dé’y top , .
it A kL — t=0)]. 4.4
dZ BO SU!J Uy(z, 0)] ( 6)

Integrating this equation in regions ‘1" and ‘2’ and determining the constants of

integration by matching to the fields ahead of the front in each case, gives

B{(2,5) = 22 {{§(5) —vofs)oxp(sa/var) - v/} (1.47)
and B
f)’f)(z, 5)= —ﬁexp [—a(s) 2]. (4.48)

Next we require continuity of v, and B, in the plane z = 0 to relate the
behaviour in the two regions. Setting Equations (4.45) and (4.43) equal at 2 = 0
and Equations (4.47) and (4.48) equal at z = 0 gives two equations for §(s) and
A’(s) which may be solved to give

Loy 2ug
g(s) = ST T o fa(s) ]’ (4.49)
and
A'(s) = §(s)s. (4.50)

Equation (4.49) corresponds to a tabulated Laplace transform and so may be

inverted (e.g. Erdélyi et al. 1954) to give g(t) = volR(t) + 1], where

R(t) = 2—22— {(v:"m + -vfu)/2 — vavaperf [(quut) %]

Vi — Y

—~v2, exp [—-vfm (1 - Ufm/”fm) ';'t] erfc [Zf ('yvigi)%] } . (4.51)

Here erf () and erfc(x) refer to the error function and its complement respec-

tively (Abramowitz and Stegun, 1965).

83




Some insight into Equation (4.51) is provided by considering limiting cases.
First, consider the limit of a perfectly conducting subphotosphere. Then,
lim A1) = H (4.52)
which is recognisable as the reflection coefficient for Alfvén waves encountering a
density step, and may be denoted a, (see chapter 2). Perfect reflection occurs in
the limit v4o € vg41, when g = 0. Equation (4.52) allows the identification of R(t)
as a generalised, time-dependent reflection coefficient for our model. Irrespective
of conductivity, perfect reflection (R = —1) is obtained in the limit v42 — 0, i.e.
when the model subpliotosphere is infinitely dense.
Equation (4.51) can also be better understood if it is appropriately scaled.

Introducing the scaled parameters
t=1/(ljva2), Z=2z/l, and B, = v,/vq, (4.53)
where { s some characteristic length, we obtain the dimensionless form

R(D

{2~ et [(RuD]
mexp = (1=r77) Rt erte (R} (4.54)

where

r= UA_[/UAQ and RM = ’YUA?J- (455)

The variable Rys is the magnetic Reynolds number of the model subphotosphere.
Figure 4.11 shows the value of R(t) for » = 10 and two values of Ryy.
The behaviour of Equation (4.54) in the limits of small and large arguments

of the error functions is given by

(4.56)

R(t_)z{ 144 (RaD)/xtr [T < B3

(1—r)/(1+7) if 1> Ry,

Consequently, at small times the interface is almost perfectly reflecting, but
at large times approaches the infinite conductivity value a, = (1 — r)/{1 +
7). This behaviour can be clearly seen in Figure 4.11. The behaviour for large
and small times may be be understood as follows. The reflection coefficient
depends only on the velocity of the subphotosphere close to the boundary z = 0.
If the subphotosphere is infinitely conducting, the subphotosphere close to the

boundary is almost instantaneously set into motion behind a propagating front.
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Figure 4.11: The generalised reflection coefficient R(f) for r = 10 and
Rar = 1 (solid) and Rpr = 10 (dashed) as a function of time. For small
times the reflection is almost perfect, but at large times I approaches the
infinite conductivity value a3 (see below).

The reflection coefficient a;, is obtained as a result. If the subphotosphere is
finitely conducting, the plasma in the subphotosphere close to z = 0 is set into
motion over a longer timescale as diffusive processes occur. Consequently, for
times ¢ < Ry, reflection is almost perfect. Figure 4.12 shows the velocity of
the subphotosphere as it is set into motion. This figure was calculated from
Equation (4.43) using Equations (4.49) and (4.50) and the numerical Laplace
inversion procedure discussed m §4.5,

As explained above, for solar parameters Rar >> 1 and so this model suggests
that it is appropriate to treat the subphotosphere as perfectly conducting when
considering the reflection of fronts incident from above. Incidentally, this model
justifies the neglect of the finite conductivity of the subphotosphere in the model

for energy transfer in a solar flare presented in chapter 2.

4.7.2 Comparison with the Earth’s magnetosphere

The generalised reflection coefficient (4.54) may be compared with the predictions
of a boundary condition on plasma and fields often invoked to describe the reflec-
tion of an Alfvénic front from the Earth’s magnetosphere-ionosphere boundary

(e.g. Goertz and Boswell, 1979; Scholer, 1970). The magnetosphere is modelled as

85




0.25
o
2o0.2
o
—~ 0.15
Q
5

[ ]
=

0.05}

Figure 4.12: The velocity of the impinged medium, U?S'z) in the case

Rar = 10, r = 5 as a function of z/! at one quarter {(small dashes), one
half (dashed), one (solid) and two (dot-dash) Alfvén transit times of the
characteristic length {. The expected value in the limit of large time is one
third.

an infinitely conducting medium and the ionosphere is an adjacent thin, finitely
conducting region, If no motion is induced in the ionosphere by the incident front,
and that there is no transmission of the front through the ionosphere, Ampere
and Faraday’s Maxwell equations imply the boundary condition on the electric

field F, at the magnetosphere-ionosphere boundary (z = 0):

OE, oE, ]
l: Iz + ,LI()EP—&?] » = 0. (457)

Here ¥p is the height integrated Pederson conductivity of the ionosphere, from
z = 0 to a depth where the field B, is assumed to be zero, owing to the non-
transmission through the lower region. The non-transmission argument relies on
the ionosphere being thin and bounded below by a non-conducting medium (the
atmosphere), in which Alfvén waves cannot propagate.

The boundary condition (4.57) may be used as follows. Consider the electric
field of an incident (‘2') and reflected (‘r’) wave in the magnetosphere: Fk, =
filt — z/va) + f-( + z/v4). Applying the boundary condition Equation (4.57)

gives

. 1~ RM'

=——27 4.58

fr
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where Ras is the magnetic Reynolds number of the ionosphere.

Two limits of Equation (4.58) have simple interpretations. When Rpr > 1,
fr = —f;, implying perfect reflection. Then E, is zero at the boundary, i.e. the
boundary is behaving as a perfectly conducting metallic plate. This is perfect
line-tying. At the other extreme, when Rar < 1, twice the incident amplitude is
produced at the boundary. This is the free end boundary condition. Physically,
the ionosphere is an insulator in this limit and so the field lines have no identity
there: the magnetospheric field lines can move without restriction in the plane of
the boundary,

As explained above, Rar > 1 is the appropriate limit for the solar photosplere,
and so a naive application of the boundary condition (4.57) implies perfect reflec-
tion for an Alfvénic front incident on the photosphere from above, independent of
the density step at z = 0. The reason for the discrepancy between this prediction
and the result implied by Equation (4.54) is that the assumptions adopted in
deriving Equation (4.57), whilst appropriate to the magnetosphere-ionospheric
boundary, are inappropriate for the photospheric boundary. Alfvenic fronts inci-
dent on the photosphere can propagate into the subphotosphere, setting it into
motion in the process. The solar atmosphere is not a thin layer, bounded below

by a non-conducting region.

4.8 Modelling the shearing of an arcade

The models developed above imply that the line-tying boundary condition is not
appropriate to describe the ‘shearing’ of a coronal magnetic arcade (see §4.1
above). In the following section a simple model is developed to describe the
evolution of a coronal arcade subject to a shearing velocity flow at one row of
footpoints. The model is consistent with the results summarised in §4.6 above,
and is similar to the model for energy propagation into a solar flare presented
in chapter 2. In common with that model it does not describe the coronal part
of the arcade as force-free, which is a requirement of any realistic model. This

limitation does not affect the qualitative results presented here however.
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4,.8.1 A two-dimensional model

The coronal arcade is modelled here as a two-dimensional structure (d/dy = 0)
in which a background field B = Byz joins two ‘subphotospheric regions’ (z < 0
and z > [} via a coronal section. It is assumed that there is only weak variation
in the magnetic structure of the arcade in the direction of the axis of the arcade.
Figure 4.13 illustrates the reasoning behind this geometry.

The arcade is assumed to be subject to a shearing velocity in the plane z =
0 and the evolution of the system is determined. The shearing velocity is be

assumed to be of the form
oy, 2 = 0,1) = vop(a) (1), (4.59)

where ¢ (z) is an even function in z. We also assume that ¢(0) = 1 and ¢(oc0) = 0.

The simplest choice of ¢ is

1 af IZLI < Zp,

e(x) = . (4.60)
0 otherwise,

where & defines the width of the shearing velocity field in @. For the simple

geometry of this model and assuming infinite conductivity in the coronal portion

of the arcade, the velocity of the arcade for times less than 74 = {/v; (where

v 41 1s the coronal Alfvén speed) is
vy(z, z,t) = vop(2) 0(t — z/va1). (4.61)

That is to say the coronal part of the arcade is set into motion with speed
vp behind a propagating Alfvénic front. The magnetic field corresponding to
Equation (4.61) can be found from the y-compouent of the momentum equation,

(Equation (4.92) in the Appendix) to be

Bovg

By(z,z,t) = — p(x)8(t — zfva). (4.62)

A1

The current densities corresponding to this magnetic field are

o, 2yt) = =2 ) 60t — 2fou), (4.63)
HoUy,
and B d
Jz(‘?": Z,t) = - 0% _('o' o(t - Z/'UA]). (4'64)
Hov g dz
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Figure 4.13: The geometry of a coronal magnetic arcade is shown in (a).
The arcade is subject to a shearing velocity flow (dark arrow) at one row
of footpoints, which establishes the current system shown. The simple
two-dimensional model for the shearing process developed here is shown
in (b). No variation is permitted in the direction of the axis of the arcade
(the y-direction), and the curvature of the magnetic field (shown by the
arrowed lines) is neglected. The current system iu (b) has been omitted
{or clarity.
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If a total current fp flows in the circuit established by the passage of the front,
Le. fo = [J7 J.(z, 2 < vart,l) de, we have that
Bowvy

Hova

L= (4.65)

The electric field associated with the passage of the front is 2y = —v,By. This
implies a z component to the Poyuting flux S, = E,B,/its. Integrating over x

gives the power the Poynting flux supplies to the advancing front;
[s0)
Ps = 2R 12 f dz o(z)?, (4.66)
0

where B4, = jgva4; is the Alfvénic impedance of the coronal part of the arcade.
The driven footpoint at z = 0 acts as an ideal MHD generator, supplying energy
at a constant rate to the Alfvénic front. The rates at which energy goes into the
component of magnetic field B, and the bulk velocity v, at the front, i.e. Py,

and Py, respectively, may also be calculated, to give
1
JPmag = HPin = §.PS. (4.67)

Equation (4.67) implies two things about the energetics of the ‘shearing’ of this
model arcade. First, the statement of energy conservation (i.e. the Poynting
theorem) for the systern has the simple form Ps = Pin + Prmage Second, the
passage of the front involves equipartition of energy between the kinetic and
magnetic components Fyj, and Pyag.

The system evolves through repeated reflections of the Alfvénic front from
the photospheric boundaries, z = { and z = 0. The subphotospheric regions are
treated as infinitely conducting regions with a lower Alfvén speed v, following
the conclusions of the models presented above, The boundary conditions imposed
are Equation (4.59) at z = 0 and continuity of F, and B, in the photospheric
boundary z = [ behind fronts.

Cousider the system just after 2k reflections of the Alfvénic front. Denoting
the magnetic fields ahead and behind the front by bax_1¢(2) and bare(2:) respec-
tively, and the corresponding velocities by vor_1¢9(2) and vorp(e), the boundary
conditions described above imply the relations

bak = bar—1 = _J—Bg(v?k — Va1 ), (4.68)
V.1

and

vai = vp. (4.69)
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Similarly, considering the system after 2k + 1 reflections and applying the

boundary conditions at z = [ implies the pair of relations

B
bagy1 — bag = —U(Uzk+1 — Vak), (4.70)
V41
and
By
bory1 — bar—1 = ——(Var41 — vak-1)- (4.71)
VA2

Equations (4.68), (4.69), (4.70) and (4.71) may be combined to give
baktz — baksr = bogg1 — box = —apa(bax — bap—1). (4.72)

This Equation may be applied iteratively to ohtain the evolution of the magnetic
field;

_ k
bas = b [1 _ 2&12M] . (4.73)
1+ )2

Equation (4.72) implies that bar4y = (b2x-+bart2)/2. Returning to Equation (4.70),

the velocity in the arcade evolves according to
Vaky1 = Vo []. - (—ﬁ’]g)k-l-l] f (474)

Assuming a;, # —1, Equation (4.74) describes how the entire arcade — and in
particular the passive footpoint -— is set into motion as momentum is transferred
across from the driving footpoint. Equilibrium is achieved when the whole arcade
is moving with the asymptotic velocity ve, = vg. The current flowing in the arcade

following each successive reflection of a front is given by
L = —b;/ 1o, (4.75)

so using Equation (4.73) the asymptotic value of current is

[o= Lt g (4.76)
,HORA‘I!

A non-zero final current flows in the arcade because in the time required to trans-
fer momentum from the driving to the passive footpoint — to bring it up to speed
vg — the driving footpoint is displaced more than the passive footpoint. Hence
the whole arcade is sheaved (i.e. does not have its magnetic field perpendicular
to the neutral line) in the asymptotic limit, implying a non-zero curreut, viz. [o. -
The final shear of the avcade is defined by

oo = tan~"(boo/Bo) = tan™ " (vo/vaz). (4.77)
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An important special case is the limit of line-tied behaviour, i.e. when the sub-
photospleric medium is a perfect reflector of the incident fronts, a;3 = —1. Then
vory1 = 0 at each reflection from z = {, since the subphotosphere cannot be set
into motion from above in this limit. The velocity being imposed at each reflec-
tion from z = 0 i1s vz = vy and so no equilibrium is possible here. As the driving
and passive footpoints are successively displaced with each reflection, the cur-
vent flowing in the arcade increases with each reflection. From Equations (4.73)
and (4.75), in this case I, = co. Presumably an ideal MHD instability or re-
connection would begin above a critical value of the current, to allow relaxation
of the system. This model is analogous to that of Haerendel (1980; 1983; 1987,
1988; 1990; 1994) for the stressing and relaxation of magnetospheric magnetic
field lines. In Haerendel’s model a ‘fracture zone’ or dissipative region is set up
to relieve the stress associated with incompatible ideal MHD motions of a system
of magnetospheric field lines.

H the equilibrium behaviour of the system is achieved only after many re-
flections of Alfvénic fronts, it is relevant to discuss the characteristic secular
timescale for the process described above. From Equation (4.74) it follows that
the time taken for the velocity of the passive footpoint to reach a fraction f of

the asymptotic value vg is
In(1 - f)?
t)r: [M'—I:, T4, (4.78)

where both logarithmic terms have fractional arguments and so are negative, If
Vg € Va1, —a1g & 1-2R 40/ R, and the characteristic time becomes &; & {/2v 42.
For typical solar values this time is a few hours, and so if one footpoint of a solar
arcade i1s continuously driven, the passive footpoint is set into motion in about

this time.

4.8.2 The role of the subphotosphere

The model developed in the previous section assumes a driving velocity vg is
maintained at the row of footpoints z = 0 for all time. A more realistic boundary
condition is to assume that a layer of finite depth in the subphotosphere is initially
set. into motion with velocity vg, but then loses speed as its initial momentum
is transferred into motion of the plasma behind frouts propagating away, both

upwards (into the coronal portion of the arcade) and downwards (into the sub-
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Figure 4.14: The shearing of the arcade is assumed here to be driven by
a subphotospheric layer of thickness L. Region 1 is the subphotospheric
part of the arcade and region 2 is the coronal part.

photospheric part). A simple two-dimensional model of this process is developed
here.

For simplicity, assume that the driving layer is a thin layer, of thickness L.
Here ‘thin’ implies that times of interest are longer than an Alfvén transit time of
the layer. The layer is assumed to be the uppermost part of the subphotosphere,
which is again assumed to have Alfvén speed v4; and to occupy the region 2z > 0,
The coronal part of the arcade (z < 0) is assumed to have Alfvén speed vy;.
Figure 4.14 illustrates the arrangement.

The velocities in the coronal (‘1’) and subphotospheric (‘2’) parts of the arcade

after £ = 0 may be written
v (@, 2,t) = f(t+ 2fvar) (z), (4.79)

and
Ugsz)(mﬂz?t) :g(t - Z/‘UA]_ +L/UA2)‘P(T')- (480)

If the driving layer is thin, a single velocity, vé’, can be assumed for it, 1.e,
vy[’(:r;, t) = vél)(:u,(], t) = vf)(a;,L, £). (4.81)

Equations (4.80}, (4.79) and (4.81) imply g(¢) = f(¢). Physically, the amplitude
of the outgoing disturbance in both directions is determined just by the velocity

of the driving layer at a given time.
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Using the y-component of the momentum equation (Equation (4.92) in the
Appendix to this chapter), the magnetic fields corresponding to the velocities vs(,l)

and v!(f) are

B
B (@, 2,1) = = f(L + 2/va)p(x), (4.82)
Al
and .
BP(z,2,1) = ——f(L = z/var + L[ var)p(x). (4.83)
A2

In Equations (4.82) and (4.83) it is assumed that there is no y-component of
magnetic field ahead of the propagating disturbance.

The complete description of the systemn requires the determination of f{¢).
This may be achieved as follows, Integrating the y-component of the momentum
equation (Equation (4.92) in the Appendix) over all z and over the thickness of

the driving layer in z, we obtain

d oo L L
PgaL dl/{; dzv/(z,t) =

Substituting Equations (4.81), (4.82) and (4.83) into Equation (4.84) yields the
differential equation for f(t):

By

“de [BP(x,L,6) - B{(2,0,0)].  (4.84)
Ho /O

df Va2 ( 'UAZ)
L .l 4.8
C[t L + VA1 f ( 5)
which implies that
F(t) = voexp [_% (1 + ”ﬂ) t] , (4.86)
L Va1

where it has been assumed that vZ(z,0) = wvep(z). Equation (4.86) describes
how the driving layer is braked as it radiates momentum behind the outward
propagating Alfvénic fronts. The two terms in the exponent of Equation (4.86)
represent the subphotospheric (the first term) and the coronal (the second term)
contributions to the braking. For v4; € va;, the dominant contribution is from
the Alfvénic front propagating into the subphotosphere. Then, the characteristic
time for the braking of the driving layer is &1, =~ L/vs;. The motion of the
driving layer is brought to a halt in a time of order the Alfvén iransit time of a
subphotospheric layer of thickness the same as the driving layer. For solar values,
the thickness of the driving layer is unknown, but this analysis suggests that the
braking owing to Alfvénic fronts propagating downwards is an important effect.
For example, for a driving layer of thickness 10* m, the layer is brought to rest

in seconds.
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The transfer of momentum behind the propagating fronts can be explicitly
shown, as follows. Irom Equation (4.79), the y-component of momentum in the
motion above the photosphere, A1), increases at the rate

dM®)
dt

Similarly, from Equation (4.80), the rate at which the y-component of momentum

= 2prva f(2) /0 * dz (). (4.87)

increases in the region z > L is given by

dM®)
dt

= 2pv a2 f(1) /000 dv ¢(x). (4.88)

Finally, defining Af7,(¢) as the momentum of the driving layer at time ¢, it is easy

to show from Fquation (4.81} that

dMly, df(t) o0

LI (Ol R .
o = el== [ deele) (4.89)

Comparison of Equations (4.87), (4.88), {4.89) and Equation (4.85) shows that

dMy/dt = — (dﬁvf(l)/dt + dﬂff”’/di), i.e. momentum is conserved in the braking

of the driving layer.

4.9 Conclusions

In this chapter, a two-dimensional model is developed to describe the dynamic
response of the subphotosphere to a current density, imposed along field lines from
the corona. The objective 1s to determine the conditions under which the current
closes immediately below the photosphere, and those under which current closure
occurs deep in the subphotosphere. Tlhe conclusion of the model (summarised in
§4.6) is that solar parameters imply that current closure occurs locally only for
an Alfvén transit time of a given layer of the subphotosphere. In the static limit,
currents flow along field lines through the photosphere.

This result is inconsistent with the assumptions about current closure implicit
in the boundary condition of ‘line-tying’, often applied to describe the behaviour
of magnetic fields at the photosphere. The line-tying assumption is tested in §4.7
above by the construction of a model for the reflection of an incident Alfvénic
front from the photosphere. The model shows that the subphotosphere may be
treated as an infinitely conducting medium of greater density for this purpose.

In §4.8, a model is presented to describe the shearing of a coronal magnetic

arcade by a velocity imposed at one row of footpoints. The model is consistent
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with the conclusions of § 4.6 and §4.7. The model implies that momentum trans-
fer occurs between rows ol footpoints of the arcade so that the passive row of
footpoints is set into motion, with a characteristic time {; = {/2v.42, where [ is
the length of the arcade, and v, is the subphotospheric Alfvén speed. For solar
parameters, this time is a few hours, The model is, however, unrealistic because
it assumes the entire subphotosphere at the driving [ootpoint is initially set into
motion. This deficiency is addressed in §4.8.2, where it is assumed that a thin
upper layer of the subphotosphere is initially set into motion, rather than the
whole subphotosphere. The drtving layer generates Alfvénic fronts that propa-
gate both upwards (into the corona) and downwards (into the subphotosphere),
transferring momentum away from the driving layer. The dominant ‘braking’
of the driving layer is due to the downwards propagating front, because of the
greater density of the subphotosphere. The timescale for the braking process is
tr, = L[v.as, where L is the thickness of the driving layer. For solar parameters,

this process is likely to be important.
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4.10 APPENDIX

4.10.1 Derivation of Equation (4.6) and discussion of the
use of Equation (4.4)

Consider the two-dimensional geometry defined by Equation (4.1). The Maxwell
equation divB = 0 is automatically satisfied for this choice of B and the fluid

equation of motion

p (%;: + v grad v) =—gradp+J x B (4.90)
has the components 5
o (p + B2/2p0) =0, (4.91)
8Uy Bg OBy
7Y 4,
P ot fo Oz’ (4.92)
and 9
o (p+ B2/210) = 0. (4.93)

Equations (4.91) and (4.93) imply Equation (4.5).

As noted in the above chapter, an important feature of the electrical conduc-
tivity of the solar photosphere is its anisotropy. Here we briefly consider this
point, and show that the choice of geometry given by Equation (4.1) allows only
the discussion of an isotropically conducting subphotosphere.

In the linear, one fluid approximation the appropriate (static) generalised
Ohm'’s law is (e.g. ICrall and Trivelpiece, 1973; Alfvén and Falthammar, 1963)

J=0(E+vxB), (4.94)
where
ap aHg ]
o=\ —og op 0
0 0 a)

Here op and o are the Pederson and Hall cross-conductivities respectively and

gy is the parallel conductivity, where:

2
op = € Vne o Me  Vni (4.95)
P vi 4w myri4w?)’ '

ne e 1 LA 1

Me
2 .
o = e —We n me Wy (4 96)
B e \v2 Fw?  mivk fw? )] '
€ ne [ 1Y i
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and

et /1 . 1
oy = 2 ( +i_). (4.97)

Me \Vne M Vni
Here w, is the gyrofrequency for species o and w,; is the collision frequency
between species ¢ and the neutral background. The generalisation to a variety of
ion species is straightforward.

The relative sizes of op and oy determine whether the cross-field conduction
below the photosphere will be significantly anisotropic. For example, if a field
E. is applied and v = 0 then the resulting cross field currents are in the ratio
JofJy = —op/og. Khan (1989) calculated the relative sizes of the cross-field
conductivities ap, o for the subphotospheric region, based on solar atmosphere
models (e.g. Spruit 1974) and with a field appropriate for sunspots (B = 0.15T).
Khan (1989) found that the cross-field conductivities are non-zero in the weakly
ionised regions of the solar atmosphere, beginning with the photosphere, where
ny,, [, ~ 107* (Priest, 1982). For the subphotospheric regions of interest,
op & —op. Just below the photosphere, |oy p} & 102 Sm™!, rising quickly to
~ 10° Sm™! at depths of greater than 1 Mm. The cross field conductivities are
slowly increasing functions of depth beyond this point. Khau (1989) integrated
the cross field conductivities to a depth of about 1 Mm, and found the values
|Zgp| & 10"'S, which are used in this chapter. These estimates were greater
than those of previous authors who had neglected the dominant contribution from
the partially ionised, subphotospheric regions. I(han’s estimates also suggest that
anisotropy is likely to be an important feature of subphotospheric conduction. [t
is not enough to assume an isotropic conductivity oy at and below the photosphere
(cf. Kovitya and Cram, 1983).

The simple geometry chosen here — i.e. Equation (4.1) — is not consistent
with an anisotropic Ohm’s law, as follows, Taking the product of the matrix ¢ and
the vector v x B gives a contribution to the current density J with y component
—ogvyBy. This will be inconsistent with the requirement J, = 0 unless oy = 0.

Setting oy = 0 and o = op for simplicity, we have the simple Ohms’
law (4.4). The electric field may be written E = o5'J — v x B. Taking the
curl of this expression in the given geometry and using the Maxwell Faraday
equation curl E = —dB/d¢ together with Equation (4.3), we obtain

0B 1 ‘B B
3ty - y (8322y T 33;2y) T BO% (4.98)

dz’

where v = poop.

98




Equation (4.98) and Equation (4.92) give Equation (4.6}, under the assump-
tion of constant density p. According to Equation (4.3), the components of

current density obey the same equation, as does v,,.

4.10.2 Derivation of Equation (4.15)

To restate, we want to solve Equation (4.6) subject to the boundary and initial

conditions {(4.10) and (4.11) respectively, and with the additional assumption that
Jlim Bz, 2,t) =0. (4.99)

Laplace transforming Equation (4.6) with the initial conditions (4.11) gives the

elliptic partial differential equation (e.g. Zwillinger, 1992)

(4.100)

. 21 2 5 2 13
d a2l s0 (P5 B)

o2 TLo\ e T an

where Ey = By(m, z,5) denotes the Laplace transform of B,(x, z,¢). Next, Fourier

transforming Equation (4.100) in z produces the simple ordinary differential equa-

tion X
d*B g
Kz’y = B(k,s)*B,, (4.101)
where
2 3 2 3
0, 8) = : = — 4,
Bk, s) a(k +73) , « L (4.102)

and where B3,(k,z,s) is the Fourier transform of B,(x,z,s). The solution of
Equation (4.101) which satisfies Equation (4,99) is the decaying exponential, and
so the Laplace transform of the solution to Equation (4.6) may be written

~ 1 0
By(2,z2,s) = E/m‘”“' Ak, 5) exp [=A(k, s)z + iha]. (4.103)

The coefficient A(k,s) in Equation (4.103) is determined by setting z = 0 and
hence recognising that A(k,s) is the Fourier transform of B,(x,0,s). Conse-
quently,

Ak, s) = f " ' By(«',0, s)exp (—ika'), (4.104)

where

B,(2',0,5) = pod(")/s. (4.105)
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Equation (4.105) is obtained by taking the Laplace transform of the initial con-
dition (4.11). Substituling Equation (4.104) with Equation (4.105) back into

Equation (4.103) and reversing the order of integration, we obtain
~ o0 o0
By(e,2,8) = E‘l/ dw'c;b(:v’)f dk exp[—B(k, s)7]cos k(z — a').  (4.106)
TS J-0 0

The integral over & in this expression may be evaluated (Gradshteyn and Ryzhik,

1980) to give
/Do dk exp [—a(k2 + fys)%z] cos k(z —2') = az('ys)%T(:c,:r', z,8),  (4.107)
0

where

[

K, ({’ys [a?2® + (2 — &)}
o222 4 (& — 2')?]%

Substituting IEquation (4.107) into Equation (4.106) yields Equation (4.15).

) . (4.108)

T(a,a' z,8) =

4.10.3 Derivation of Equation (4.18) from (4.15)

Equation (4.15) may be written

Byfwyz,5) = o [ dE O H(@,6,2,5), (4.109)
with .
Hw,6y208) = 2 (1) 10,6, 29), (4.110)

where T (z,¢, z,s) is defined by Equation (4.108). It is easy to show that

lim H(z,£,2z,8) =0 if 2 #£ ¢, (4.111)

y—+co

and by reference to a table of integrals (Gradsteyn and Ryzhik, 1980),

oo 1
/ dé H(z,€, z,8) = —exp [—(73);’] ) (4.112)
- S
Together, Equations (4.111) and (4.112) imply that
F}im H{z,& z,8) = 1exp(—.sz/v,l) &z — &), (4.113)

and this identification allows the integral in Equation (4.109) to be performed in

the limit of infinite conductivity, to give Equation (4.18).
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Chapter 5

An equivalent circuit for Alfvén

waves in a stratified atmosphere

Abstract: An equivalent circuit is derived to represent linear, vertically propagating
Alfvén waves in a horizontally stratified atmosphere with applied vertical magnetic
field. A transmission line circuit is identified for arbitrary density and conductivity
profiles, although an explicit input impedance can ouly be written down for particular
cases,

By way of example, the model is applied to Alfvén waves generated at the solar
photosphere and propagating in the solar chromosphere, following Hollweg (1972). The
chromosphere is modelled as a region with bi-exponential density variation, Alfvén
waves are reflected and transmitted at the discontinuity in scale height, a process
described by adding a terminating impedance to the transmission line. T'or the case
of equal scale heights in the two regions, a series RC circuit can also represent the
input impedance, although frequency-dependent circuit elements are required, The
equivalent circuits arrived at provide a simple model of Alfvén wave propagation in
the solar chromosphere, which is relevant to the coronal heating problem, and to solar

flares. The role of stratification in defining the circuits has not been looked at before.
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5.1 Introduction

An equivalent circuit approach has often been adopted by solar theorists to de-
scribe the bulk plasma physics of energy storage and conversion in the solar
atmosphere (Spicer, 1982). In particular, the circuit approach has found applica-
tion in the description of a flaring coronal loop (for a review see Melrose, 1993),
and in the long-standing problem of coronal heating (lonson, 1982; 1984).

One criticism of the circuit theory approach is that it is only an approxi-
mation to the underlying plasma physics. The relevant circuits are generally
deduced by qualitative reasoning, rather than derived from first principles (i.e.
the fluid equation of motion and Maxwell’s equations). Consequently, the picture
is incomplete. For example, a simple circuit model of a flaring coronal loop does
not describe the propagation of magnetic energy at the Alfvén speed in the loop
(Melrose, 1993).

A rigorous circuit theory description of the propagation of Alfvén waves was
provided by Scheurwater and Kuperus (1988; cf. Haerendel, 1983). Scheurwater
and Kuperus (1988) derived a transmission line circuit to describe Alfvén wave
propagation in a uniform, weakly damped plasma, and also considered the circuit
description of the reflection of the wave from a density step. This chapter extends
the approach of Scheurwater and Kuperus (1988) to derive a circuit describing
Alfvén wave propagation in a stratified, damped plasma. Scheurwater and Ku-
perus (1989) also considered the generalisation to a non-uniform plasma, but
restricted their attention to a weakly varying plasma. Here we consider a plasma
with arbitrary density variation (and conductivity variation) in the direction of
a uniform, background magnetic field. This is particularly relevant to the solar
wind, where significantly non-WKB waves are observed (Hollweg, 1972). The
objective is to determine the role of stratification in defining the circuit elements.
The model considers only Alfvén waves propagating parallel to the background
magnetic field, and perpendicutar to the stratification. Consequently, there is no
need to consider refraction, and magnetohydrodynamic (MHD) mode coupling.

The model is applied to the case of an ideal, bi-exponential atmosphere, follow-
ing Hollweg (1972). This particular density profile is relevant because the density
profile in detailed solar atmosphere models is well approximated as a piecewise

exponential for describing wave propagation (Hollweg, 1972; 1978; 1981; 1984).
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5.2 Alfvén waves in a stratified atmosphere

Consider a stratified plasma, i.e. with variation only in the z direction, threaded
by a uniform background magnetic field By = B¢z. The plasma is assumed to

have a finite conductivity, op(2) and to obey the Ohm’s law
J=op(z)(E+ v xB). (5.1)

Then the linearised MHD equations and Maxwell’s equations permit incompress-
ible, transverse perturbations B = Bb and E = Eb x %, which satisfy the pair

of equations

9B OE

FTR 0 (5:2)
and oF 9*B aB
'—" -1 K 2—— =
ot + koor(2)] dz0t +oa() 0z 0. (5:3)

For simplicity, we consider only harmonically varying perturbed fields (~ ).
Following Scheurwater and Kuperus, a voltage, V(z), and current, /{z}, may be

assigned to the perturbed field quantities according to the relations

(5.4)

/ . .
E(z,t) = ‘—ge'”' and B(z,t) = Hoi(z)e“"t,

where ! is a characteristic length. With these definitions, the time averaged
Poynting flux through a square of area {* (perpendicular to z) is 1Re(VI*).
Substituting V and I, as defined by Equation (5.4} into Equations (5.2} and (5.3),

gives the coupled pair of ordinary differential equations

(_I!K = —ZAI, (55)
dz
and y v
I
IZ- - —ZB(Z), (56)
where
z4 = twilp, (5.7)
and ( e
_ povalz 1
2p(z) = -+ or(@) (5.8)

Equations (5.5) and (5.6) may be combined to give a single equation describing
the variation in complex impedance, Z(z) = V/I, in the plasma;

dZ 1

_ = 2 .
=it zﬁ(z)z : (5.9)
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Equations (5.5) and (5.6) — or alternatively, Equation (5.9) — describe the
variation of current and voltage in a transmission line, with series impedance z,4
per unit length, and shunt impedance zg(z) per unit length (see the Appendix,
§5.5.1). Comparison of Eqnations (5.7) and (5.8) with the impedance of standard

circuit elements from circuit theory,
1
wC’

allows the identification of the transmission line elements. Specifically we may

Zind = %:JL, anp = res = R, (510)

write z4 = iwl,, to identify a series inductance /4 = po per unit length; and
zp(z) = [twep(2)] 7 +rp(2), to identify a shunt capacitance, cg(z) = [pova(2)?]™",
and shunt resistance, rg(z) = [op(z)]™!, per unit length. Figure 5.1 illustrates
the transmission line composed of these elements.

Equation (5.9) admits several simiple solutions. If the impedance is assumed
to be independent of distance z, then the solution is Z = (zAzB)%. In particular,
this is appropriate when the plasma is lossless, and then Z = pov,, the Alfvénic
impedance of the plasma. More generally, if the element zp is assumed inde-
pendent of z, then the ordinary differential equation (5.9) may be analyticaily
solved for the impedance Z(z). It is necessary to specify a load impedance, say
Zy = Z(h). The input impedance, Zo = Z(0), obtained this way is

Zy, -+ in tan(2¢h)
0= 7??] +iZy tan(2Ch)’

where 7 = (242p)7 and ¢ = (—z4/zp)7. Equation (5.11) is the input impedance

(5.11)

considered by Scheurwater and Kuperus (1988).

The rest of this chapter is devoted to another exact solution of Equation (5.9),
namely that of an ideal stratified atmosphere with exponential density variation.
This case is appropriate to describe the propagation of Alfvén waves, generated

at the photosphere, through the chromosphere.

5.3 Alfvén waves in an exponential atmosphere

Consider a region ‘1’ of horizontally stratified plasma with density variation

p1 = porexp(—z/A1), (5.12)

(where Ay is the scale height) and ambient magnetic field By = Bpz. The lin-
earised MHD equations with this density profile lead to the solution for har-

monic, transverse, incompressible velocity perturbations (Ferraro, 1954; Ferraro
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Figure 5.1: The transmission line derived for Alfvén wave propagation in a
stratified atmosphere. The elements depicted are related to those defined
above as follows: Ly = {462, Rp = rg(z)/éz, and Cp = ep(#)dz, where
8z is an incremental length in the direction of stratification. The length of
line shown represents propagation from » = 0 (where the input impedance
is Zp), to z = h (where the load impedance is Z).
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and Plumpton, 1958)
vi(z,t) = [AH(20,6) + BHS? (20161)] exp (iwt), (5.13)

where

f] = CX})(—Z/?.A]), a, = AIW/'UAl, (514)

A and B are constants (with the dimensions of velocity), and v4; = Bo/(pmﬂo)%
is the Alfvén velocity at z = 0. H(gl)(:c) and Héz)(n:) are the Hankel functions
(Abramowitz and Stegun, 1965). Equation (5.13) describes Alfvén waves prop-
agating vertically in a horizontally stratified, exponential atmosphere, and has
attracted much attention and application in solar models (e.g. Hollweg, 1972;
1978; 1981; 1984; Rosner et al. 1986). Note that the (dimensionless) parameter
o) is of order the ratio of the scale height to the wavelength of the propagating
wave. Also, resistivity and viscosity have been neglected in the derivation of
Equation (5.13).

To first order, the electric field associated with Equation (5.13) is given by

Eq = —v) X By, and has magnitude
Ey(2,1) = —Bo [AH{Y(20:&,) + BH{(201€1)] exp (iwt) . (5.15)
The Faraday-Maxwell equation gives the corresponding magnetic field of the wave
to be
Bi(z,1) = —iﬂ;iill (AP (20,6) + BHP (20:6)] exp (iwt). (5.16)
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Without loss of generality, axes are taken such that vy = vy, Ey = Ej%X and
By = By.

Equations (5.13), (5.15) and (5.16) may be physically interpreted as a prop-
agating wave solution, as follows. The time averaged Poynting vector, P =
sRe(E x B*), is in the z direction, is second order (in the linearised fields) and

has magnitude (Hollweg, 1972)

_ B3 1AP - B

= 5.17
2110 ?TUJA[ ( )

P

Equation (5.17) allows the identification of AHM(20,¢,) and BH®(20:£,) as
upward and downward going waves respectively (where +2z is the ‘upward’ direc-
tion). Alternatively, in the limit A; — oo (so that p, — po;) the solutions above
become upward and downward going, attenuated plane waves with coefficients
A, B respectively. The uniform density limit is important in interpreting several

of the results derived helow.

5.3.1 A bi-exponential chromosphere

Next consider (after Hollweg, 1972), a plasma where region ‘1” occupies 0 < z < h
and a region ‘2’, with scale height A,, occupies z > h. In region ‘2’, the plasma
density is given by
p2 = poaexp (—z/As). (5.18)
Comparing Equations (5.12) and (5.18), continuity of density at z = A implies
po2 = povexp(—h/A)).
The bi-exponential density variation described above was suggested as an ap-
proximate model of the density variation iu the solar chromosphere by Hollweg
(1972), based on a quiet chromosphere model. In Hollweg’s model, z = 0 repre-

sents the photosphere, and (for reference) the appropriate scale heights are
A =185km and A, =1125km, (5.19)

with the break in scale height occurring at 2 = 1950km. The discontinuity in
scale height at z = h is a good approximation to the true (smooth) density
variation for waves with wavelength longer than the scale over which the smooth
transition occurs. The bi-exponential density model well approximates the quiet
chromosphere model considered by Hollweg (1972) up to a height of 104 km, The

increase in scale height through the chromospliere occurs because temperature is
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Figure 5.2: The geometry of the model for Alfvén wave propagation in a bi-
exponential chromosphere, Waves are generated at z = 0 and propagate to
the break in scale height at 2 = h, where they are reflected or transmitted.
The coefficients A, B and €' describe the incident, reflected and transmitted
waves respectively.

increasing towards the corona. Extending this approach, the density variation of
the solar atmosphere from the photosphere to the corona may be modelled by a
piecewise exponential density variation (Hollweg, 1978; 1981).

Introducing the parameters
&2 =exp[—(z— h)/2A2) and o7 = Ayw/vas, (5.20)

where vi, = vaexp(h/2A:) is the Alfvén velocity at z = A, the correspond-
ing solutions to Equations (5.13), (5.15) and (5.16) may be written down. For

example, the velocity variation in region ‘2’ is
va(2,t) = [CH 20282) + DHS? (20365)] exp(iwt). (5.21)

After Hollweg (1972), incoming waves from z = oo are ignored (i.e. D = 0).
The model then describes parallel propagating Alfvén waves, generated at the
photosphere or below and traversing the chromosphere. Figure 5.2 illustrates the
geometry of the model.

The incident, reflected and transmitted waves are related by the boundary
conditions of continuity of v; and B; (j = 1,2) at z = h. This process defines the

reflection (R) and transmission (7°) coefficients

B _ B HMB) - #P(B)HM ()

A H(gz)(ﬁ)Hl(l)(’T) _ H(gl)(7)H1(2)(ﬁ) (5.22)

R=
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and

C —d3
T="= : (5.23)
A rp [HP B (v) - HE () HP(B)]
where the notation
o = 2lA1w, ﬁ - 2.1\1(.0’ y= 2/\20) (5'24)
VAl VA2 VA2

1s introduced. Note that o = 26, and ¥ = 205, in terms of the notatlion introduced
above. A special case of Equations (5.22) and (5.23) is that of equal scale heights
in the two matched regions, i.e. Ay = Az. Then # = v so that R =0, T = 1. This
is the expected result for a single stratified plasma: only an upward propagating
wave exists,

Equations (5.22) and (5.23) were derived by Hollweg (1972), who imposed the
additional constraint that the waves are harmonically driven at z = 0. Hollweg
(1972) thereby defined A in terms of the amplitude of the driving velocity, but

for present purposes that step is not required.

5.3.2 The input impedance

The next step is to derive the input impedance describing the Alfvén waves given
by Equations (5.13) and (5.21) above. Following the procedure of §5.2, for the
given waves, matched at z = h, the voltage and current defined by Equation {(5.4)

are given by

Vie) = { wﬂéi;(zalgl) + Vil (20,61) 0z <h (525)
ViH; ' (20262) if 2> h,

and

H):{qamnM%ﬁ%ﬁn+mmwwmﬂiWSzSh (5.26)
i (&2/Z2) Vil 7 (20262) if z > h.

Here

Vi=—DBolA, V.=RV, V,=TV, (5.27)
and the characteristic impedances

Zy = povay and  Zy = povae (5.28)

are introduced. Z; and Z, are the impedances that would be assigned to corre-
sponding plane waves at the origin and at z = & respectively, since (for example)
Zo

)
A1

108




where Zo = (jto/€0)? is the impedance of free space (%o = 3779) and 4 = c/va
is the refractive index of a plane Alfvén wave at z = 0.

The complex impedance associated with the wave is then given by

; (1) @] /[ 4 py@] .
Z(z):{ —i(Z /&) [ + ru| /[H" + RUP| o<z <h (5.30)

—i(Z3)&) HEV  HY ifz>h,

where the arguments of the Hankel functions are 2014, for 0 < z < h and 20,6,
for z > h. It is straightforward to check that in the limit A,, A — oo, i.e. the
limit of a uniform density plasma, Equation (5.30) reduces to Z,, the impedance
of an Alfvén wave in a uniform medium.

The input impedance, Zy, and load impedance, Zy, for the model are given
by
5 () + RH," (a)

Zo = —iZ , (5.31)
* T H (@) + REP (o)
and -
.,
Zy = —iZy ‘;l)(ﬂ. (5.32)
Hy ()
5.3.3 An equivalent circuit when A = A,
For the case of matching scale heights in regions ‘1’ and ‘2’ — i.e. a single strat-
ified plasma — as remarked above the reflection coeflicient R is zero so that
Equation (5.31) becomes
H(l)
Zo = —z'Zl—“m—(“—). (5.33)
Hi(e)
Equation (5.33) may be written in the form
2
T = -1 Y 5.34
0= Ty (e~ i@ h(e) + @K@}, (53

where Ji(z) and Y;(z) are Bessel functions of the first and second kinds re-
spectively (Abramowitz and Stegun, 1965). In Equation (5.34) the combination
JoJ1+ Yo is positive for all . For large a, Zg approaches Z;, the impedance of
a uniform density plasma. This may be understood by noting that « is the ratio
of the scale height to the wavelength of the Alfvén wave at z = 0. If this ratio
is large, the density does not change appreciably over a wavelength and so the
wave encounters an almost uniform medium,

Equation (5.34) could be interpreted as the input impedance to a transmission

line, following the approach of § 5.2 above. However, it may also be interpreted as
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the input impedance to a series RC circuit, with frequency-dependent elements,
as follows. Comparison of Equation (5.34) with the impedance of standard circuit

elements from circuit theory, Equation (5.10}, allows the identification

Zo(w) = Ro(w) + 7wColw)’ (5.35)
where
221
Hole) = Ty + Vi@ (5.38)
and
Co(w) = Jila)” + Yila) (5.37)

wZi [Jola)Ji(a) + Yo(@)Yi(a)]
Equations (5.36) and (5.37) describe a frequency-dependent resistance and ca-
pacitance respectively, and estahlish that the input impedance in the case r = 1
may be represented by a series RC circuit, with frequency-dependent elements.
The frequency dependence of the elements does not obscure their unique identi-
fication as resistive and capacitive by their phase. The phase, in turn is uniquely
specified by the requirement that the input impedance reduce to Zy in the limit
of a uniform density medium, i.e. as A; — oco. The positive definiteness of the
combinations of Bessel functions in Equation (5.37) is essential to this line of
argument. Note that in the uniform density limit, only a resistance remains; the
capacitance (and the form of the resistance for finite A;) contain the information
about the stratification of the plasma.

The resistive and capacitive elements Rg(w) and Cp(w) may be interpreted as

follows. It is easy to confirm that
1
SO Ro(w) = 2P, (5.38)

where P is the magnitude of the time averaged Poynting vector, given by Equa-
tion (5.17). Equation (5.38) identifies fo(w) as the radiation resistance of the
generator at z = 0 (see the Appendix to this chapter, §5.5.2).

The interpretation of Cy(w) is slightly more involved. In the Appendix to this
chapter (§5.5.2) it is shown that 1/Cp(w) is a measure of the magnetic energy

stored in the wave,

5.3.4 An equivalent circuit when A; # Ay

Following the theory outlined in §5.2, a transmission line with series inductance

{s1 = o per unit length and a shunt capacitance cg(z) = {f/,uo-vf,_l per unit
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length is appropriate to describe Allvén wave propagation in region ‘1’. There
are no resistive elements down the line because the plasma is assumed to he
lossless.

The process of reflection and transmission of Allvén waves in the model chro-
mosphere is described by the termination of the transmission line at z = h in a
load impedance, Zj, defined by Equation (5.32). Z,, like Zp in the case A} = Ay,
can be represented by a transmission line (following §95.2), or by a series RC

circuit with frequency-dependent elements. The series circuit is described by:

1

Zp(w) = Rp(w) + WG (@)’ (5.39)
where 07
Biew) = 7y [A(7)? + ()Y (540)
and
Culw) Ju(y)” + 1 () (5.41)

T wZy (B R + Y Yi()]
The load capacitauce, Cp(w), and load resistance, ft)(w), are physically inter-

preted as were Co(w) and Rg(w) (see §5.3.3).

5.4 Conclusions

The equivalent circuit approach is one that is widely used in solar physics to de-
scribe the bulk energetics of flares, and of coronal heating. The circuits considered
are usually deduced in an ad hoc fashion, rather than being rigorously derived
from the plasma equation of motion and Maxwell’s equations. Consequently
they neglect some aspects of the plasma physics, and in particular neglect wave
propagation.

Kuperus and Scheurwater (1988; cf. Haerendel, 1983) rigorously derived an
equivalent circuit to describe Alfvén wave propagation in a uniform magnetised
plasma. This chapter extends their approach to describe Alfvén wave propaga-
tion in a stratified plasma, relevant for example to Alfvén waves generated at the
photosphere and propagating upwards in the solar chromosphere. Scheurwater
and Kuperus (1989) also considered the case of a stratified plasma, but their ap-
proach applies only to a plasma with a slowly varying density profile. The model
developed here is appropriate for an arbitrary density profile and conductivity, in

the direction of stratification. As an example, the model is applied to Alfvén wave
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propagation and reflection in the bi-exponential chromosphere model of Hollweg

(1972).
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5.5 APPENDIX

5.5.1 The transmission line equations

This section of the Appendix establishes that Equation (5.9) represents the vari-
ation in impedance of a transmission line, as discussed above.

Consider the choice of constituent elernent fov a transmission line shown in
Figure 5.3. The transmission line is assumed to be composed of infinitely many
such elements. I'rom the rules for combining impedances, the input impedance
for this element is given by

-1

1 bz

1
Z(z) = = ‘
(2) = Gzabe + Loabz + Z(2 + 62) ) (542
Rearranging this equation and expanding in 2z we obtain
_ 2
Letbe)—2() _ | A48 L by, (5.43)
bz zp(z)

Taking the limit 6z — 0 in Equation (5.43) gives precisely Equation (5.9).

1 1
¢ 2 ZA z ZA y

Z(z) Z, Z(z+0z)

Figure 5.3: The constituent element for the transmission line, representing
the change in impedance between z and 2+ &z, The elements depicted are
related to those defined above as follows: Z4 = 2462, and Zg = 2p(z)/dz.

5.5.2 Interpreting the input impedance

The interpretation of the series circuit elements assigned to the input impedance
(§5.3.2 above) follows from the ‘complex’ Poynting theorem, i.e. the Poynting
theorem applied to fields harmonically varying in time (Jackson, 1975). The

specific treatment here follows Scheurwater and Kuperus (1988).
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The Ampere and Faraday Maxwell equations (omitting displacement current),
with the assumption of harmonic time variation {~ ) give the complex Poynt-
ing theorem

1

5.]* B+ 2iwwg +divP, =0, (5.44)

where P, = Ex B*/2p is the complex Poynting vector (P = Re(P.,) is the usual,
time averaged Poynting vector), and wp = B - B*/4y is the energy density in
magnetic fields.

Assuming the field geometry used in this chapter, expression (5.44) is inte-
grated over the volume of a box, of cross section { by {, and length from z = 0 to
z = zg. The complex Poynting vector is in the z direction and so gives a surface
integral contribution at z = 0 and z = 2. The contribution at z = 0 is related

to the circuit parameters 7{0) and V{0) by
— 2V(O)1(0) = [ peas (5.45)
I z=0

Writing Z(0)} = V(0)/1(0), the volume integral of Equation (5.44) together with

Equation (5.45) allows the input impedance to be identified:

2(0) = II(O)IZ( /J" EdV—l—Qaw/VdeV-}-]/ P, ds) (5.46)

For the lossless medium considered in §5.3, J* <« E is purely imaginary, and by
definition wg is purely real, so writing Z(0) = R + ¢X, the real and imaginary

parts of the input impedance may be determined:

2
- P.dS 5.47
o /L, P (547)
and
- 7 A
X=m U)I"’[ ]Im dV+2w/ wp dI +/f m(P,) - dS|. (5.48)

Equations (5.47) and (5.48) allow the circuit elements assigned to the input
impedance t0 be physically interpreted. The resistive part of Z(0), R, is pro-
portional to the (z-independent)} Poynting flux, and is termed the radiation re-
sistance of the generator of the wave. The reactive part, X, involves the energy
stored in the magnetic field of the wave together with contributions from the
imaginary Poynting flux and the imaginary rate of energy exchange between the
fields and plasma. Ior a plasma with exponential density variation (see §5.3),
all three terms in Equation (5.48) contribute to X = —1/wCp(w), where Co(w) is
given by Equation (5.37).
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