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There is considerable interest in accurate modelling of the solar coronal mag-
netic field using photospheric vector magnetograms as boundary data, and the
nonlinear force-free model is often used. However, recent studies using Hinode
data have demonstrated that this modelling fails in basic ways, with the failure
attributable to the departure of the inferred photospheric magnetic field from
a force-free state. The solar boundary data are inconsistent with the model,
which leads to inconsistencies in calculated force-free solutions. A method for
constructing a self-consistent nonlinear force-free solution is described, which
identifies a force-free solution that is close to the observed boundary data.
Steps towards developing more sophisticated magneto-hydrostatic modelling –

taking into account pressure and gravitational forces at the level of the solar
boundary data – are also outlined.
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1. Background

1.1. Coronal magnetic field modelling

Solar flares are large magnetic explosions in the Sun’s corona, powered by

intense active region magnetic fields around sunspots.17 Large flares influ-
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ence our local space weather, including producing energetic particle storms

which can damage satellite electronics. It has been estimated that a space

weather ‘superstorm’ at the next solar maximum could produce an eco-

nomic loss of up to $70 billion16 due to lost revenue and infrastructure.

Space weather effects provide a motivation for developing accurate mod-

elling of solar coronal magnetic fields, with the aim of better understanding

and predicting large-scale solar activity.

Spectro-polarimetric measurements of certain photospheric lines permit

a determination of the vector magnetic field at the photosphere. The result-

ing vector magnetograms are inferences rather than direct measurements,4

and involve a number of uncertainties, but they provide the most detailed

available information about active region magnetic fields. A new generation

of instruments, including the spectropolarimeter (SP) of the Solar Optical

Telescope (SOT) on the Hinode satellite,23 is producing state-of-the-art

data. In principle vector magnetograph data provides a set of boundary

values for modelling the overlying coronal field, but in practice basic diffi-

culties prevent the construction of reliable models from the data.5,22

1.2. The nonlinear force-free model

The nonlinear force-free model, involving a static balance of purely mag-

netic forces, is often used to describe the coronal magnetic field in the low

density solar corona.6,12,20 A nonlinear magnetic field B satisfies

J× B = 0 and ∇ · B = 0, (1)

where J = µ−1
0 ∇ × B is the electric current density. The first of Eqs. (1)

states that J is everywhere parallel to the magnetic field, and hence the

equations may be reformulated as:

∇× B = αB (2)

B · ∇α = 0, (3)

introducing the force-free parameter α. Eq. (3) states that that α is constant

along magnetic field lines.

The boundary conditions for the problem comprise a specification of

the normal component of B in the boundary (denoted Bn), together with

a specification of α over one polarity (sign) of Bn.1,3,7,20 Equivalently, the

boundary condition on α may be replaced by a specification of the normal

component Jn of the electric current density over one polarity of Bn. We

label the two choices of polarity as P (corresponding to Bn > 0), and N

(corresponding to Bn < 0). It is only necessary to specify the force-free
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parameter (or Jn) on one polarity because of the constancy of α along field

lines in the model.

In application to vector magnetograph data, boundary values for α may

be constructed via finite differencing of the vector magnetogram values Bvm
x

and Bvm
y parallel to the surface, according to

αvm =
1

Bvm
z

(

∂Bvm
y

∂x
−

∂Bvm
x

∂y

)

. (4)

In the modelling described here solar curvature is ignored, and the boundary

field values are assumed to lie in the plane z = 0. If Eq. (4) is applied over

the observed vector magnetogram region it provides two possible choices

for boundary values on α, corresponding to the P and N choices.

The nonlinear force-free equations are difficult to solve in the general

3-D case. A variety of iterative numerical methods have been developed,28

and demonstrated to work on theoretical test cases.21 Some of the methods

use the specification of the full vector field in the boundary as boundary

conditions, rather than the boundary conditions outlined above. This is

formally an over-prescription, but should not introduce a problem if the

boundary values are consistent with the force-free model.

The current-field iteration, or Grad-Rubin,7 method provides one nu-

merical approach to solving the nonlinear force-free model. This method

involves solution, at iteration k, of the scheme:

B[k] · ∇α[k+1] = 0, (5)

∇× B[k+1] = α[k+1]B[k]. (6)

If B[k] is known then Eq. (5) is a linear equation for α[k+1], allowing propa-

gation of boundary values of the force-free parameter into the volume. The

right-hand side of Eq. (6) is then known, and it is also a linear equation

(Ampère’s law) for B[k+1], which may be solved in the volume subject to

the boundary conditions on the field.

A fixed point of the iteration, B = B[k+1] = B[k], is a solution of the

nonlinear Eqs. (2) and (3). There are a number of specific implementations

of this method, involving different methods of solution of the equations,

and different ways of imposing the boundary conditions.2,3,25 Typically the

scheme is started with from the potential field B[0] = Bpot satisfying the

boundary values of Bz. All Grad-Rubin methods use the mathematically

correct boundary conditions on α specified above.

A fast current-field iteration implementation was presented in Ref. 25,

namely a method with a computational time which scales as N4, for a grid
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with N3 points. Eq. (5) is solved by field line tracing such that ∇ · J[k] = 0

is enforced, and Eq. (6) is solved using 2-D Fourier Transforms and a vector

potential, thereby ensuring ∇ · B[k] = 0.

1.3. The failure of the nonlinear force-free model

Two recent workshops have applied nonlinear force-free modelling to Hin-

ode SOT/SP data.5,22 A workshop in 2007 used data for NOAA active

region AR 10930, observed on 12-13 December 2006, and a workshop in

2008 used data for AR 10953, observed on 30 April 2007. The workshops

found that the force-free methods fail in basic ways in application to the so-

lar data. Different methods produce solutions which are inconsistent with

one another. For example, the estimates of magnetic free energy for AR

10930 varied between 1% and 32% of the energy Ep of the potential field

with the same boundary values Bvm
z , for solutions using different methods

of solution of the force-free model but based on the same ‘preprocessed’

boundary data (this procedure is discussed below).22 The solutions pro-

duced by individual methods are also not self-consistent. For example, for

AR 10953, the P and N solutions produced by the fast current-field it-

eration method25 had free magnetic energies equal to 3% and 18% of Ep

respectively.5

The left-hand panel of Figure 1 illustrates the inconsistency. This shows

the field lines for the P solution (dark lines) and the N solution (light lines)

for AR 10953, for the central part of the active region, in a view looking

directly down on the computational domain. The field lines are qualitatively

very dissimilar, and the light field lines are clearly more twisted, reflecting

the fact that this solution has larger values of |α|, and a correspondingly

greater free energy. Despite this basic inconsistency, nonlinear force-free

modelling continues to be applied to solar boundary data. Caveat emptor!a

The failure of the model may be attributed to the departure of the

vector magnetogram field values from a force-free state. Errors in the field

determination may contribute, but it is generally believed that the photo-

spheric field is subject to non-magnetic forces.13 The net force and torque

on the coronal magnetic field may be evaluated via surface integrals of the

boundary field values, which provide necessary conditions for consistency of

the boundary data with the force-free model.15 These integrals are typically

significantly non-zero for vector magnetogram data.

aLet the buyer beware!
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Fig. 1. Nonlinear force-free magnetic field solutions for AR 10953, constructed using
the fast current-field iteration method applied to Hinode SOT/SP data. The field lines
for the solutions are shown for the central part of the active region, in a view looking
down on the computational domain. Left panel: The P (dark field lines) and N (light
field lines) solutions obtained from the original data – these solutions use the boundary
values for the force-free parameter on the positive and negative polarity respectively, and
illustrate the inconsistency of the boundary data with the force-free model. Right panel:
The P and N solutions after 10 self-consistency cycles.

One approach to the problem is ‘preprocessing,’ whereby the boundary

data are modified so as to satisfy the necessary conditions.29 Preprocessing

of solar-like boundary data has shown to lead to improved nonlinear force-

free solutions,14 and preprocessing was applied to the data at the workshops

in 2007 and 2008 in the modelling of ARs 10930 and 10953.5,22 However,

preprocessed solar photospheric vector magnetic field data remains incon-

sistent with the force-free model, as shown by the inconsistency of the P

and N solutions in the left panel of Figure 1. The conditions being enforced

are necessary but not sufficient, and there are an infinite number of such

conditions.1 Although preprocessing enforces some of these conditions, it

does not enforce others, as shown explicitly in Ref 5 for the AR 10953 data

(see Figure 5 in that paper). A further problem with preprocessing is that

it typically involves smoothing the data, which is undesirable. The Hinode

data are distinguished by its high resolution, and this should be exploited

in modelling.
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2. Self-consistent nonlinear force-free modelling

An alternative approach involves identifying a force-free solution which is, in

some sense, close to the observed (non-force-free) boundary data. A specific

method, in the context of the current-field iteration approach to solving the

nonlinear force-free model, is presented in Ref 26, and is demonstrated in

application to Hinode SOT/SP data for AR 10953.

2.1. The self-consistency method

There are three steps in the ‘self-consistency’ method.26 First, the P and N

solutions are constructed, from the (unpreprocessed) vector magnetogram

boundary data. The vector magnetogram-derived boundary values of the

force-free parameter are denoted by α0±σ0, where σ0 are uncertainties cal-

culated from the corresponding uncertainties in the inferred magnetic field

values.11 The P solution provides a mapping, along field lines, of boundary

values at points in the region P to points in N , and thereby defines new

possible boundary values α1 ± σ1 of the force-free parameter at points in

N . Similarly, the N solution maps boundary values at points N to points

in P , and so defines new possible boundary values α1 ± σ1 at points in

N . Hence the two solutions define a complete new set of boundary values

α1 ± σ1 (over both polarities).

Step two involves deciding on a new boundary value for α at each bound-

ary point based on two possible choices α0±σ0 and α1±σ1. For this purpose

Bayesian probability is applied.8 The assumption of Gaussian errors and

an application of Bayes’s theorem lead to a most probable value, and asso-

ciated uncertainty:26

α2 =
α0/σ2

0 + α1/σ2
1

1/σ2
0 + 1/σ2

1

and σ2 =

(

1

σ2
0

+
1

σ2
1

)−1/2

. (7)

In other words, the new value is an uncertainty-weighted average of the two

possible values. The new set of boundary values over all boundary points is

still, in general, inconsistent with the force-free model, but the values are

expected to be closer to consistency.

Step three involves iterating steps one and two. Two new force-free

solutions are constructed for the P and N choices using the boundary values

α2 ± σ2, via two separate applications of current-field iteration. Together,

the two new solutions define new mappings between the P and N regions,

and hence a complete new set of boundary conditions α3 ± σ3. Eqs. (7) are

applied to α2 ± σ2 and α3 ± σ3 to decide on most probable values α4 ± σ4

at each boindary point, and so on.
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Each iteration of the procedure [construction of the P and N solutions,

and then application of Eqs. (7)] is referred to as a ‘self-consistency cycle.’

It is expected that the procedure converges to a self-consistent solution, i.e.

a set of boundary values of the force-free parameter for which the P and

N solutions are the same.

2.2. Application to Hinode data

In Ref. 26 the achievement of self-consistency is demonstrated using the

Hinode SOT/SP data for AR 10953. The right-hand panel of Figure 1

illustrates the final, self-consistent solution, after 10 self-consistency cycles.

The field lines for the P and N solutions, shown by dark and light lines

respectively, agree closely. The energies for the two solutions differ by less

than 0.03%.

The self-consistency procedure changes the boundary values. The

changes are quite significant for the AR 10953 case, representing an rms

change of about 120 G in Bx and about 100 G in By. This reflects the fairly

gross discrepancies between the initial P and N solutions seen in the left

panel of Figure 1. The changes are comparable to the changes introduced

by preprocessing for the preprocessed data used at the workshop (prepro-

cessing changes the Bz values also, whereas the Bz values are preserved in

the self-consistency procedure).

It should be noted that the application to AR 10953 demonstrated in

Ref 26 is at the level of a ‘proof of concept’ and could be improved in many

ways. Uncertainties were not incorporated into the procedure (all points

were assumed to have equal uncertainties). Also, the Hinode SOT/SP data

used was embedded in a larger SOHO/MDI field of view for which only

Bz values were available, and α was assigned to zero for this region. The

rms changes introduced by the procedure are expected to be smaller once

these limitations are removed. The calculation will be repeated including

uncertainties and avoiding embedding in the near future.

3. Magneto-hydrostatic modelling

Whilst the self-consistency procedure outlined above provides one approach

to constructing a coronal magnetic field model, and addresses the specific

difficulty preventing the construction of a nonlinear force-free model, it

is desirable to have a physical solution to the problem, i.e. an approach

incorporating non-magnetic forces.

It is likely that the magnetic field at the photospheric level is subject to
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magnetic forces as well as pressure gradients, and dynamical forces (asso-

ciated with flows). All of these forces are expected to be significant at the

photospheric level and in at least a narrow layer above that level. However,

here we consider the next simplest model, i.e. a static model incorporat-

ing pressure and magnetic forces, but neglecting gravity, referred to as the

magneto-hydrostatic (MHS) model. The MHS equations may be written:

J × B = ∇p and ∇ ·B = 0, (8)

where p is the gas pressure, the new dependent variable in the model.

Other forms of the equations are also useful. The first of Eqs. (8) implies

B · ∇p = 0 (9)

J · ∇p = 0, (10)

i.e. p is constant along field lines of B and stream lines of J. It is convenient

to separate J into components parallel and perpendicular to B:

J = J‖ + J⊥, (11)

with the parallel component represented in terms of a scalar function α:

J‖ =
1

µ0
αB. (12)

Setting ∇ · J = 0 leads to

B · ∇α + µ0∇ · J⊥ = 0, (13)

and taking the cross product of B with the first of Eqs. (8) gives

J⊥ =
1

B2
B×∇p. (14)

The boundary conditions for the problem comprise a specification of Bn

together with a specification of Jn and p over one polarity of Bn.7 The need

to specify Jn and p over only one polarity follows from Eqs. (9) and (10).

3.1. The Grad-Rubin method

There have been relatively few attempts to solve the 3-D MHS equations

from boundary conditions. One approach to solving the model in the solar

context was presented in Ref 31 and Ref 32, and subsequently developed

in spherical co-ordinates.18,30 That approach is a generalisation of the op-

timisation method for calculating nonlinear force-free fields.24,27 Here we

consider a different method, a generalisation of current-field iteration, based

on a qualitative description given in Grad and Rubin in Ref. 7.
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The Grad-Rubin iteration scheme for the MHS problem may be sum-

marised as:

B[k] · ∇p[k+1] = 0 (15)

J
[k+1]
⊥ = B[k] ×∇p[k+1]/(B[k])2, (16)

B[k] · ∇α[k+1] = −µ0∇ · J
[k+1]
⊥ , (17)

∇× B[k+1] = α[k+1]B[k] + µ0J
[k+1]
⊥ . (18)

If B[k] is known then Eq. (15) is a linear equation for p[k+1], allowing

propagation of boundary values of pressure into the volume. Eq. (16) then

allows the calculation of the perpendicular component of the current density

J
[k+1]
⊥ in the volume and on the boundary. Given those values, Eq. (17) is

a linear equation for α[k+1] allowing propagation of boundary values of

the scalar function α[k+1] into the volume. [The boundary values of α[k+1]

need to be constructed from the boundary values of Jn and the calculated

boundary values of J
[k+1]
⊥ at the given iteration, according to Eqs. (11)

and (12).] The right-hand side of Eq. (18) is then known in the volume, and

this equation is a linear equation for B[k+1] (Ampère’s law), which may be

solved in the volume subject to the boundary conditions on the field. The

scheme may be started from the potential field B[0] = Bpot satisfying the

boundary values of Bz . A fixed point of the iteration is a solution of the

nonlinear problem.

A code implementing a method of solution of the iteration scheme (15)–

(18) is currently being developed and tested. The code uses techniques

similar to those used in the fast current-field iteration code for the nonlinear

force-free problem.25 Full details of the code and methods, and initial results

for a simple test case will be given in a later publication.

3.2. Prospects for application to data

In principle spectro-polarimetric data provides not just magnetic, but also

thermodynamic information, so that it is possible to infer plasma param-

eters from the observations.9,10 Typically the thermodynamic parameters

are ignored, in standard ‘inversion’ procedures. However, methods have

been developed for reliable extraction of additional information, including

the pressure profile in the atmosphere.4,19 In principle this data provides

additional boundary information for coronal field modelling.

In practice it may be necessary to introduce gravity into the magneto-

hydrostatic modelling, to make the atmospheric model more realistic. This

requires an additional dependent variable, density, but with the assumption
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of an equation of state the density is simply related to pressure. The Grad-

Rubin scheme may also be applied in this case. However, prospects for

modelling from the data remain to be investigated in detail.

4. Summary

In principle, photospheric vector magnetogram data provides boundary

data for coronal magnetic field modelling, and state-of-the-art data are

being returned by new instruments including the SOT/SP on the Hinode

spacecraft. In practice, however, modelling has proved difficult.

The nonlinear force-free model is appropriate in the corona, but it does

not describe the field at the photospheric level, corresponding to the solar

data. The model is inconsistent with the data, and this has lead to a failure

of nonlinear force-free modelling.5,22 Preprocessing the data to make it more

compatible with the model29 does not solve the inconsistency problem.

An approach to identifying a ‘self-consistent’ nonlinear force-free solu-

tion, which has boundary values close to the observed data, is described.26

This provides one possible avenue for successful modelling. An alternative is

to consider more sophisticated physical models, incorporating non-magnetic

forces. A method for solving the magneto-hydrostatic (MHS) equations us-

ing Grad-Rubin iteration7 is briefly described. A code implementing this

method is currently being developed.
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