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1.1. Scientific inference

Inference is the process of going from observed effects to underlying causes,

and is the inverse process to deduction. Whereas deduction is exact, in-

ference is imprecise, and necessarily probabilistic. Inference is the basis of

science: we are always faced with observations we would like to explain in

terms of underlying physical causes.

Bayesian inference is an approach to the problem based on an identity in

conditional probability (Bayes’s theorem). Notable Bayesians have included

Pierre-Simon Laplace (who inferred the mass of Saturn from contemporary

observations using Bayesian methods, and obtained a value consistent with

modern estimates), the economist John Maynard Keynes, and the applied

mathematician and geophysicist Harold Jeffreys. Bayesian inference has at

times been controversial, because of its incorporation of subjective prior in-

formation into the process of inference. Historically the Bayesian approach

was referred to as “subjective probability.” In recent decades there has

1
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been wider acceptance and application of Bayesian methods in a range of

disciplines, driven by a recognition of the utility and power of the methods.

Increases in computational speed and the use of Markov chain Monte Carlo

methods have also played a part in this adoption.

This chapter presents an overview of Bayesian methods in Section 1.2,

and then an example of their application to the problem of solar flare pre-

diction in Section 1.3. Section 1.2.1 presents Bayes’s theorem and explains

its use for inference. Sections 1.2.2 and 1.2.3 describe basic approaches to

parameter estimation and hypothesis testing in the Bayesian method, and

Section 1.2.4 illustrates these approaches in application to a simple exam-

ple: coin tossing. Section 1.2.5 gives a brief account of a relatively recent

development, Markov chain Monte Carlo (MCMC) methods. Sections 1.2.6

and 1.2.7 discuss the relationship between Bayesian and classical methods of

parameter estimation and hypothesis testing. Section 1.3.1 provides back-

ground on the problem of solar flare prediction, and Section 1.3.2 describes

properties of flare statistics. A Bayesian approach to prediction exploit-

ing these statistics is then presented in Section 1.3.3, and is illustrated in

application to whole-Sun prediction of soft X-ray flares in Section 1.3.4.

1.2. A tutorial on Bayesian methods

1.2.1. Bayes’s theorem

Consider two propositions, X and Y (these may be thought of as statements

that are either true or false). The probability that both are true may be

written

P (X, Y ) = P (X |Y ) × P (Y )

= P (Y |X) × P (X), (1.1)

where P (X |Y ) is the probability X is true, given that Y is true (a condi-

tional probability).

The Reverend Thomas Bayes [1] applied Eq. (1.1) to inference by iden-

tifying one of the propositions with a hypothesis or model (labelled H),

and the other with available data (labelled D), and writing the equation in

the form

P (H |D) =
P (D|H) × P (H)

P (D)
. (1.2)

In many cases it is sufficient to omit the evidence term and use the state-
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ment of proportionality rather than equality:

P (H |D) ∝ P (D|H) × P (H), (1.3)

and then the requirement that the probabilities sum to unity over all pos-

sible hypotheses:
∑

i

P (Hi|D) = 1 (1.4)

is used to determine the missing factor.

The terms in Eq. (1.2) are given names: P (H |D) is called the “poste-

rior” probability, P (D|H) is the “likelihood,” P (H) is the “prior” probabil-

ity, and P (D) is sometimes called the “evidence.” Eqs. (1.2) or (1.3) may

be interpreted as statements of how an initial estimate of the probability

of a hypothesis (the prior) is modified by new information (the likelihood),

to give an updated estimate of the probability of a hypothesis (the pos-

terior). Eq. (1.1) is a fact about conditional probability. However, in the

application to inference there is some ambiguity because of the subjectivity

inherent in the choice of the prior. The probability that one person assigns

to a hypothesis being true, a priori, may not match that of another person.

1.2.2. Bayesian parameter estimation

In inference there are two basic problems: parameter estimation, i.e. de-

ciding the best values for the parameters of a given model, and hypothesis

testing or model selection, i.e. deciding between competing models. First

we consider parameter estimation.

The basic approach is to express the model H in terms of model pa-

rameters, labelled θ = [θ1, θ2, ..., θN ]. The functional form of the likeli-

hood P (D|θ) must be identified in terms of these parameters, based on the

model, and possibly details of how the data were obtained (the likelihood

may incorporate observational uncertainties). A prior P (θ) also needs to

be chosen, based on existing knowledge. Bayes’s theorem is then applied

in the form

P (θ|D) ∝ P (D|θ)P (θ) (1.5)

to give the posterior as a function of the model parameters.

In many cases the posterior will have a single maximum, as a function

of the model parameters, and the parameter values corresponding to the

maximum provide “best estimates” for the parameters. The width of the
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posterior in the vicinity of the maximum (how localized the maximum is)

provides an estimate of the uncertainties in the best estimates.

If the interest is with only one parameter, say θ1, then it is possible to

integrate over the other parameters, to produce a univariate posterior:

P (θ1|D) =

∫

P (θ|D)dθ2dθ3...dθN . (1.6)

This process of integrating over unwanted or “nuisance” parameters is called

“marginalization.”

In the Bayesian method, the posterior is taken to provide complete in-

formation about parameters, and methods of obtaining best estimates of

parameters from the posterior are of secondary importance. Correspond-

ingly, there are many ways to obtain best estimates. Expected values are

often used. The expected value of a function f(θ1) is

E [f(θ1)] =

∫

f(θ1)P (θ1|D)dθ1, (1.7)

or

E [f(θ1)] =

∫

f(θ1)P (θ|D)dθ (1.8)

in the multi-dimensional case. Expected values of powers of θ1 provide

means and standard deviations which may be used as best estimates and

uncertainties:

θ1,est = E [θ1] ,

σ2

1,est = E
[

θ2

1

]

− (E [θ1])
2
. (1.9)

Alternatively, the location of the maximum of the posterior (the mode) is

often used as a best estimate:

d

dθ1

P (θ1|D)

∣

∣

∣

∣

θ1,est

= 0. (1.10)

If the posterior function is approximately Gaussian, then the following for-

mula may be used to estimate the associated uncertainty:

σ−2

1,est = − d2

dθ2
1

lnP (θ1|D)

∣

∣

∣

∣

θ1,est

. (1.11)

The right hand side of Eq. (1.11) is the coefficient of 1

2
(θ − θ1,est)

2 in the

Taylor expansion of − lnP (θ1|D) around θ1,est. If the posterior is Gaussian

this is equal to σ−2, where σ is the usual width (standard deviation). The

formula uses only the behaviour of the posterior function at the peak, so it
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is important to check that the global behaviour is approximately Gaussian,

to ensure the estimate is meaningful.

Fig. 1.1 illustrates these two approaches to obtaining best estimates and

uncertainties.

(b)

1 D(    |   )P

θ1θ1,est

σ1,est

Expected
values

θ1 D(    |   )P

θ1θ1,est

σ1,est

Mode +
Gaussian

(a)

θ

Fig. 1.1. Best estimates based on expected values [panel (a)], and on the mode and
local Gaussian behaviour [panel (b)].

1.2.3. Bayesian hypothesis testing

Bayesian hypothesis testing involves taking ratios of Bayes’s theorem. For

two competing hypotheses, H1 and H2, we have

P (H1|D)

P (H2|D)
=

P (D|H1)

P (D|H2)

P (H1)

P (H2)
. (1.12)

It should be noted that the common evidence term P (D) in the two state-

ments of Bayes’s theorem has cancelled, and plays no further role. The ratio

of posteriors O12 = P (H1|D)/P (H2|D) is called the “odds ratio”, and is

equal to the ratio of the likelihoods, modulated by the ratio of the priors.
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For exclusive hypotheses [P (H1|D) + P (H2|D) = 1] it is possible to assign

an absolute probability for a model, e.g. P (H1|D) = O12/(1 + O12). More

generally there may be many competing hypotheses, and it is necessary to

order the relative probabilities.

1.2.4. Is this coin fair?

To illustrate the methods of Bayesian parameter estimation and hypothesis

testing, we consider a simple example often used in text books [2]: coin

tossing. Suppose that you have a coin, and that you would like to determine,

on the basis of tossing the coin, whether it is fair. For example, in 10 tosses

of the coin you observe two heads. Is the coin fair?

As a problem in Bayesian parameter estimation, we can consider trying

to infer the “bias” θ of the coin, which we define as the probability of

obtaining a head in a single toss. For a fair coin, θ = 1

2
.

If r heads are observed in n tosses of the coin, the likelihood of this data

D is given by the binomial distribution

P (D|θ) =
n!

r!(n − r)!
θr(1 − θ)n−r, (1.13)

although all we really need is the statement of proportionality:

P (D|θ) ∝ θr(1 − θ)n−r. (1.14)

In Bayesian inference it is necessary to choose a prior, describing the

state of knowledge or ignorance about parameters in the absence of data. If

you were suspicious about the coin before you started tossing it, you might

consider a uniform prior, assigning equal probability to all possible values

of θ:

P (θ) =

{

1 if 0 ≤ θ ≤ 1,

0 otherwise.
(1.15)

Alternatively, if you were somewhat confident of fairness, but still wanted

to admit other possibilities, you might consider a Gaussian prior, peaked

about one half:

P (θ) ∝
{

exp
[

− 1

2
(θ − 1

2
)2/σ2

]

if 0 ≤ θ ≤ 1,

0 otherwise,
(1.16)

with a width σ chosen to reflect your suspicion about the coin.
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The posterior for the problem is then given by the product of the like-

lihood and the chosen prior:

P (θ|D) ∝
{

θr(1 − θ)n−rP (θ) if 0 ≤ θ ≤ 1,

0 otherwise,
(1.17)

and the normalization condition
∫ 1

0
P (H |D)dH = 1 is used to determine

the constant of proportionality.

Fig. 1.2 illustrates the evaluation of this posterior, for both choices of

the prior. Each panel shows a probability distribution function (PDF) for

θ. Panel (a) illustrates the two priors, with the uniform prior shown by

the solid curve and the Gaussian prior (with θ = 0.2) shown by the dashed

curve. Panel (b) shows the corresponding posterior distributions for the

observation of two heads in ten tosses of the coin. Panel (c) shows the

corresponding posterior distributions for the observation of 28 heads in 100

tosses of the coin.
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(b) After 10 tosses (2 heads)
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Fig. 1.2. Bayesian inference applied to coin tossing. Panel (a) shows two possible choices
for the prior distribution of the probability θ of a coin landing heads: a uniform prior
(solid), and a Gaussian prior (dashed). Panel (b) shows the corresponding posterior
distributions based on the observation of two heads in ten tosses. Panel (c) shows the
corresponding posterior distributions based on 28 heads in 100 tosses.

After 10 tosses of the coin [panel (b) in Fig. 1.2], the posterior distri-

butions are quite broad. The value θ = 0 is ruled out, because heads have

been observed. Values of θ above about 0.7 are unlikely, but only θ = 1
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is strictly impossible (since tails have been observed). The two choices of

prior lead to somewhat different posterior distributions. On the basis of

these results, it is hard to make a very definitive estimate of θ, and the

prior plays an important role.

After 100 tosses of the coin [panel (c) in Fig. 1.2], the posterior distri-

butions are much narrower. Values of θ less than about 0.1 and larger than

about 0.5 are very unlikely, based on the data. The two choices of prior

lead to quite similar posterior distributions. On the basis of these result,

more definitive estimates of θ may be made, and the role of the prior is less

important.

To illustrate more quantitative parameter estimation, we can consider

the case of the uniform prior, which is straightforward to evaluate analyt-

ically. The normalisation of the posterior is achieved using the Eulerian

integral

∫

1

0

θr(1 − θ)n−rdθ =
r!(n − r)!

(n + 1)!
, (1.18)

so that

P (θ|D) =
(n + 1)!

r!(n − r)!
θr(1 − θ)n−r. (1.19)

Evaluating Eq. (1.9) for this distribution gives

θest =
r + 1

n + 2
, σ2

est
=

θest(1 − θest)

n + 3
. (1.20)

(The result for θest is known as Laplace’s rule of succession, and was fa-

mously used by Laplace to estimate the probability that the Sun will rise

tomorrow [3].) For the case of two heads in 10 tosses, we have θest ≈ 0.27

and σest ≈ 0.12, which is suggestive of a departure from fairness but not

definitive. For 28 heads in 100 tosses we have θest ≈ 0.28 and σest ≈ 0.045,

which is becoming quite definitive. Alternatively, we can use Eqs. (1.10)

and (1.11), leading to

θest =
r

n
, σ2

est
=

θest(1 − θest)

n
. (1.21)

For r = 2 and n = 10 we have θest = 0.2 and σest ≈ 0.13, and for r = 28

and n = 100 we have θest = 0.28 and σest ≈ 0.045.

As an example of a hypothesis test, we consider the question of whether,

on the basis of the data, the coin is more likely to be heads biased (θ > 1

2
),
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or tails-biased (θ < 1

2
). For a uniform prior, the odds ratio of the two

models may be evaluated analytically:

Oht(r, n) =

∫

1

1

2

θr(1 − θ)n−rdθ
∫ 1

2

0
θr(1 − θ)n−rdθ

=
I 1

2

(n − r + 1, r + 1)

1 − I 1

2

(n − r + 1, r + 1)
(1.22)

where Ix(a, b) is the incomplete Beta function. [This example does not cor-

respond exactly to Eq. (1.12) because here we have integrated each posterior

over the relevant values of the model parameter θ.] Evaluating this expres-

sion for the examples of interest gives Oht(2, 10) = 67/1981 ≈ 3.4 × 10−2,

and Oht(28, 100) ≈ 4.3 × 10−6. For the case of 10 tosses, the coin is more

likely to be tails-biased, although the result is not definitive, but for 100

tosses the tails bias is very strongly favoured.

1.2.5. Markov chain Monte Carlo (MCMC)

Normalisation and calculation of expected values involves evaluating inte-

grals, for example of the form of Eq. (1.7), which may be multi-dimensional.

Until recently, this presented a practical problem for Bayesian inference.

However, “Markov chain Monte Carlo” (MCMC) methods now provide a

powerful, general solution to the problem. Here we present only the basic

idea, which is particularly simple. (For details, see e.g. Ref. [4].)

If a sample {θ1i, i = 1, 2, ..., n} of random variables from a probability

distribution P (θ1|D) is available, then an estimate of an expected value

may be constructed via a sum:

E [f(θ1)] =

∫

f(θ1)P (θ1|D)dθ1,

≈ 1

n

∑

i

f(θ1i). (1.23)

Markov chain Monte Carlo methods provide ways to generate appropriate

sets {θ11, θ12, ...}, using only uniformly-distributed random variables, which

are simple to generate (approximately) on a computer, and evaluations of

the function P (θ1|D). The methods produce Markov chains (sequences of

random numbers, such that each number depends only on the previous

number) with the property that, after an initial “burn-in” period of non-

stationarity, the Markov Chain becomes stationary, and then approximates
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a sequence of samples from P (θ1|D). A number of different MCMC algo-

rithms are commonly used, including the Metropolis, Metropolis-Hastings,

and Gibbs sampler methods.

1.2.6. Relationship to maximum likelihood and least squares

“Maximum likelihood” and “least squares” are methods commonly used for

parameter estimation, which are closely related to the Bayesian approach.

We briefly discuss the relationship, and the approximations and assump-

tions being made these methods.

Consider a model involving parameters θ = [θ1, θ2, ..., θN ], and a set of

data D = [D1, D2, ..., DM ]. Bayes’s theorem may be stated

P (θ|D) ∝ P (D|θ)P (θ). (1.24)

Assuming a uniform prior gives

P (θ|D) ∝ P (D|θ), (1.25)

i.e. the posterior is proportional to the likelihood. The “maximum likeli-

hood estimate” θML = [θML1, θML2, ..., θMLN ] is the set of model parameters

which maximizes the likelihood, i.e. satisfies

∂

∂θi
P (D|θ)

∣

∣

∣

∣

θMLi

= 0, (1.26)

for i = 1, 2, ..., N . In conventional statistical inference, the only justification

for this estimate is that it makes the observed data most probable, or most

likely [5]. However, given Eq. (1.25), this estimate also maximizes the

posterior, i.e. makes the model most probable. Hence we see that the

maximum likelihood estimate is the Bayesian modal estimate, assuming a

uniform prior.

Assuming that the data points are independent, we have

P (D|θ) = P (D1|θ)P (D2|θ) . . . P (DM |θ). (1.27)

If the model gives data values F(θ) = [F1(θ), F2(θ), ..., FM (θ)] in the ab-

sence of observational errors (uncertainties), and the errors are assumed to

be Gaussian distributed, then the likelihood of each datum is

P (Di|θ) =
1√

2πσi

exp

{

− [Fi(θ) − Di]
2

2σ2
i

}

(1.28)
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for i = 1, 2, ..., M , where the σi = σi[Fi(θ)] are uncertainties which de-

pend on the model data values in a specified waya Combining Eqs. (1.27)

and (1.28), the overall likelihood is

P (D|θ) ∝ exp

[

−1

2
χ2(θ)

]

, (1.29)

where

χ2(θ) =

M
∑

i=1

[Fi(θ) − Di]
2

σ2

i

. (1.30)

The quantity χ2 = χ2(θ) is usually called “chi-square,” or the “chi-square

statistic.” The log-likelihood is

lnP (D|θ) = const − 1

2
χ2(θ), (1.31)

and clearly the likelihood/log-likelihood is a maximum when chi-square is a

minimum. The estimate for the model parameters obtained by minimizing

chi-square, which we label θLS, is usually called the “least squares” estimate.

From this derivation, we see that the least squares estimate is also a

Bayesian estimate, subject to additional of assumptions and approxima-

tions. In principle these assumptions may be relaxed in the Bayesian ap-

proach. For example, it is possible to incorporate errors other than Gaus-

sian errors, which is sometimes appropriate. Also, a non-uniform prior may

be introduced to reflect prior knowledge about the model parameters. For

example, if one parameter represents energy, than the prior may be used to

enforce the requirement of non-negativity of this parameter. More gener-

ally, the prior may be used to “bias” certain areas of the parameter space,

if it is known a priori that certain values are more likely to be correct. This

process has no counterpart in classical methods.

Bayesian methods are also distinct from classical methods in other spe-

cific ways. The Bayesian approach provides a posterior distribution, rather

than the limited information afforded by best estimates and uncertainties.

This may be of particular use if the posterior distribution has an unusual

shape (for example is multi-modal, or otherwise departs significantly from

a Gaussian). The posterior distribution contains the totality of informa-

tion available from inference, and this may be scrutinized in different ways.
aThe Gaussian or “normal” distribution is often appropriate to describe observational
uncertainties. Some insight into the almost ubiquitous success of the Gaussian to describe
errors is provided by the central limit theorem [5], which states (roughly) that the sum
of a large number of independent random variables from a variety of distributions is
normally distributed. For a more detailed explanation, see Ref. [6].
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Bayesian methods also place a fundamentally different emphasis on the

roles of data and of models. Classical methods work with the likelihood,

which presupposes a model, and assesses the probability of the data given

the model. The model is essentially treated as being perfect, and the data

imperfect. From the Bayesian perspective, the roles are reversed. The

posterior assesses the probability of the model given the data, so the data

is presupposed, or perfect, and the model imperfect. For many scientists

this may appear to be a more natural perspective: science involves the

construction and refinement of models based on available observations.

1.2.7. Classical hypothesis testing

Classical hypothesis testing is quite different to the Bayesian approach pre-

sented in Section 1.2.3. The classical method involves the choice of a “statis-

tic,”and here we consider the use of chi-square.

A large value of χ2
LS

= χ2(θLS) (where θLS is the least squares esti-

mate, obtained as explained in Section 1.2.6), may be an indication that

something is wrong. One possibility is that the model is incorrect. The

“chi-square test” involves calculating Pd(χ
2 > χ2

LS
), the probability of ob-

taining a larger value of χ2 than χ2
LS

, for the given data, assuming that

the model is correct. The quantity Pd(χ
2 > χ2

LS
) is called the significance,

and depends on d = M − N , the “number of degrees of freedom.” It is

straightforward to calculate this quantity based on the likelihood defined

by Eqs. (1.27)-(1.30) [7]. The calculation evaluates the probability of get-

ting data that departs further from the (fixed) model than the data that

was observed. The classical approach to hypothesis testing then involves

“rejecting” the model if the significance is too small, say less than 1%.

A variety of criticisms of this procedure have been raised. First, it is

not possible to accept a model, only to reject it. Given a suitably aberrant

set of data, any model will be rejected. As Harold Jeffreys stated, “There

has not been a single date in the history of the law of gravitation when a

modern significance test would not have rejected all laws and left us with no

law.” [8] A related criticism is that the method does not consider alternative

hypotheses. Finally, there is a degree of arbitrariness in the choice of the

statistic, and also in the choice of a significance level for rejection. The

Bayesian method explicitly deals with these problems. If a hypothesis is

generally accepted, then the prior should reflect this, and a test based on a

single set of aberrant data will not lead to the model being rejected. The

Bayesian method forces consideration of competing hypotheses, and does
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not involve the arbitrary choice of a statistic, or of a significance level.

1.3. An application to solar flare prediction

1.3.1. Background

Solar flares are magnetic explosions in the ionised outer atmosphere of the

Sun, the solar corona. Flares occur in and around sunspots, where intense

magnetic fields penetrate the visible surface of the Sun, and thread the

overlying coronal plasma. During a flare some of the energy stored in the

magnetic field is released and appears in accelerated particles, radiation,

heating, and bulk motion. The flare mechanism is accepted to be magnetic

reconnection, a process involving a change in connectivity of magnetic field

lines, but many aspects of the process remain poorly understood. Flares

occur suddenly, and there are no (known) infallible indicators that a flare

is about to occur. Hence flare prediction is probabilistic.

Large flares strongly influence our local “space weather.” They can

lead, for example, to enhanced populations of energetic particles in the

Earth’s magnetosphere (the region magnetically connected to the Earth),

and these particles can damage satellite electronics, and pose radiation risks

to astronauts and to passengers on polar aircraft flights. The space weather

effects of large flares motivate a need for accurate solar flare prediction.

A variety of properties of active regions are correlated with flare occur-

rence. For example, certain sunspot classifications [9], qualitative measures

of magnetic complexity [10], and moments of quantitative photospheric

magnetic field maps [11, 12] provide flare predictors, of varying reliabil-

ity. Operational flare forecasters refer to the tendency of a region which

has produced large flares in the past to produce large flares in the future

as “persistence,” and this provides one of the most reliable predictors for

large flare occurrence in 24-hour forecasts [13]. The US National Oceanic

and Atmospheric Administration (NOAA) uses an “expert system” based

on sunspot classification and other properties of active regions to assign

probabilities for the occurrence of large flares [9].

Flares are commonly classified by their peak flux at X-ray wavelengths,

in the 1-8 Å band measured by the Geostationary Observational Environ-

mental (GOES) satellites. Moderate size flares correspond to “M-class”

events, with a peak flux in the range ≥ 10−5 W m−2 to ≥ 10−4 W m−2.

Large flares correspond to “X-class” events, with peak flux above ≥
10−4 W m−2. The NOAA predictions assign corresponding probabilities
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ǫM and ǫX for the occurrence of at least one event with peak flux above

these levels within 24 hours.

Existing methods of flare prediction are not very accurate. One measure

of success of probabilistic event forecasts is provided by the “skill score,”

defined as

SS(f, x) = 1 − MSE(f, x)

MSE(〈x〉, x)
, (1.32)

where f denotes the forecast value, x denotes the observation (a one or a

zero, according to whether an event did or did not occur, respectively), 〈...〉
denotes an average over the forecasts, and

MSE(f, x) = 〈(f − x)2〉 (1.33)

denotes the mean-square error. The skill score quantifies the improvement

of the forecasts over a prediction of the average in every case. The maxi-

mum of the skill score is one, representing perfect prediction, and negative

values of the skill score indicate predictions worse than forecasting the aver-

age. The NOAA published statistics describing the success of its forecasts

for 1986–2006b The skill score for one-day forecasting of X-class flares is

positive for only 7 of the 21 years.

1.3.2. Flare statistics

Flare occurrence follows a power-law frequency-size distribution, where

“size” denotes some measure of the flare magnitude, for example the peak

flux in X-rays measured by GOES. In other words, the number of events

per unit time and per unit size S, denoted N(S), obeys

N(S) = λ1(γ − 1)Sγ−1

1
S−γ , (1.34)

where λ1 is the total rate of events above size S1 oberved, and γ ≈ 1.5− 2

is a constant, which depends on the specific choice of S. Although the dis-

tribution is typically constructed based on all flaring active regions present

on the Sun over some period of time, it also appears to hold in individual

active regions [14]. The appearance of this power law in flare occurrence

motivated the avalanche model for flares, in which the energy release mech-

anism consists of a sequence of elementary events which trigger one another,

and in which the system is in a self-organised critical state [15, 16].

bSee http://www.swpc.noaa.gov/forecast verification/.
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Flare occurrence in time may be modelled as a Poisson process [17, 18].

For intervals in which the mean rate of flaring λ does not vary greatly, the

distribution of waiting times τ is then

P (τ) = λ exp(−λτ). (1.35)

Over longer time scales, the rate will vary with time, and the distribution

is more complex.

Fig. 1.3 illustrates these properties of flare statistics. Panel (a) shows a

schematic of a sequence of events, as size versus time, and also illustrates a

waiting time τ . Panel (b) shows the power-law frequency-size distribution,

and panel (c) shows the Poisson waiting-time distribution.

S

lo
g

τ

N
(S

)
lo

g

Slog τ

Waiting−timeFrequency−size

(c)(b)

(a)
t

τ

P
( 

 )

Fig. 1.3. Schematic illustration of flare statistics. Panel (a): flare events, showing size

S versus time, and indicating a waiting time τ . Panel (b): frequency-size distribution.
Panel (c): waiting-time distribution.
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1.3.3. Event statistics method of prediction

Given the relative success of persistence as a flare predictor, and the simple

statistical rules describing flare occurrence, it is worthwhile to consider

methods of prediction relying on flare statistics alone. Refs. [19] and [20]

develop such an approach, using the Bayesian method.

The basic idea is as follows. If S1 is the size of a “small” event (chosen

such that small events are well observed), and S2 is the size of a “big”

event (which you would like to predict), then the power-law frequency-size

distribution Eq. (1.34) implies that the rates λ1 and λ2 of events above the

two sizes are related according to

λ2 = λ1 (S1/S2)
γ−1 . (1.36)

Eq. (1.36) allows estimation of the rate of big events even if none have been

observed. Given this estimate, the probability of at least one big event in

a time TP is

ǫ = 1 − exp(−λ2TP )

= 1 − exp
[

−λ1 (S1/S2)
γ−1

TP

]

, (1.37)

using Eq. (1.35). If M events are involved in the estimation of the rate

λ1, then it follows that σǫ/ǫ ≈ M−1/2 [19]. Hence the prediction becomes

accurate if many small events are observed.

The Bayesian aspect of the method concerns the estimation of γ and

λ1 from the observed data. Specifically, if the data D consists of events

s1, s2, ..., sM at times t1 < t2 < ... < tM , then the problem is to calculate

posterior distributions Pγ(γ|D) and P1(λ1|D). Given these, the posterior

distribution for λ2 is

P2(λ2|D) =

∫

∞

1

dγ

∫

∞

0

dλ1P1(λ1|D)Pγ(γ|D)

× δ
[

λ2 − λ1(S1/S2)
γ−1

]

, (1.38)

using Eq. (1.36). Finally, the posterior distribution for ǫ is obtained using

Pǫ(ǫ|D) = P2 [λ2(ǫ)|D]

∣

∣

∣

∣

dλ2

dǫ

∣

∣

∣

∣

, (1.39)

where λ2(ǫ) = − ln(1 − ǫ)/TP , from Eq. (1.37).

The inference of the power-law index γ follows from Eq. (1.34), which

implies the likelihood [21]:

P (D|γ) ∝
M
∏

i=1

(γ − 1)(si/S1)
−γ . (1.40)
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A uniform prior is used. If M ≫ 1, the posterior/likelihood is sharply

peaked in the vicinity of the modal/maximum likelihood estimate

γML =
M

lnπ
+ 1, where π =

M
∏

i=1

si

S1

. (1.41)

In this case a suitable approximation to the posterior in Eq. (1.38) is pro-

vided by Pγ(γ|D) = δ(γ − γML).

The inference of the rate λ1 of small events is complicated by the time

variation of the rate. The procedure used is to estimate the rate at the

time the prediction is made using the “Bayesian blocks” procedure from

Ref. [22]. This procedure is a Bayesian change-point algorithm for decom-

posing a point process into a piecewise-constant Poisson process by iterative

comparison of one- versus two-rate Poisson models.

Fig. 1.4 illustrates the procedure. Panel (a) shows a sequence of data,

consisting of point events on a time line, during an observation interval T .

The prediction interval TP is also shown. The Bayesian blocks procedure

compares the relative probability of one- and two-rate models for the obser-

vation interval T , for all choices of change point corresponding to an event

time. If a two-rate model is more probable, then the data in each of the

two chosen intervals is used for comparison of one- and two-rate models,

and these intervals may be further sub-divided. An interval for which the

one-rate model is more probable is a Bayesian block. The procedure con-

tinues iteratively in this way, until a sequence of Bayesian blocks is decided

on, as shown in panel (b). The data D′ in the last block, consisting of M ′

events in time T ′, then supplies a likelihood for the current data given the

rate λ1:

P1(D
′|λ1) ∝ λM ′

1
e−λ1T ′

, (1.42)

based on the assumption of Poisson occurrence. The prior may be taken

to be uniform [19], or a prior may be constructed based on the rates in the

other blocks [20].

1.3.4. Whole-Sun prediction of GOES flares

To illustrate the method, we consider whole-Sun prediction of GOES soft

X-ray flares, as described in detail in Ref. [20].

The largest soft X-ray flare of the modern era occurred on 4 November

2003, and saturated the GOES detectors at X28 (a peak flux in the 1-

8 Å GOES band of 2.8 × 10−3 W m−2), although it was later estimated to
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T’

(b)

T T

t(a)

t

λ

Bayesian blocks

Data

P

Fig. 1.4. Schematic illustration of Bayesian blocks determination of current rate. Panel
(a): data, comnsisting of point events in time line during an observation interval T . The
prediction interval TP is also shown. Panel (b): Bayesian blocks decomposition of the
rate λ, and identification of the most recent interval T ′ when the rate is approximately
constant.

be as large as X45 [23]. It is interesting to consider applying the method

for that day, following [20].

The data D consists of one year of events prior to the day from the whole

Sun, above peak flux S1 = 4 × 10−6 W m−2 (corresponding to a GOES C4

event). This gives 480 events. Probabilities ǫMX and ǫX, for the occurrence

of at least one event in the range M to X, and at least one X-class event,

respectively, were inferred for the 24 hours of 4 November 2003.

Fig. 1.5 illustrates the Bayesian blocks procedure in application to the

data. Panel (a) shows the 480 events plotted as peak flux versus time.

Panel (b) shows the Bayesian blocks decomposition: there are 13 blocks,

and the last block has a duration of T ′ = 15 days and contains M ′ = 104

events.

Fig. 1.6 shows the posteriors for the predictions. The solid curve corre-

sponds to ǫMX, and the dashed curve corresponds to ǫX. The best estimates

(using expected values) are shown by short vertical lines at the bottom, and

are ǫMX ≈ 0.73 ± 0.03, and ǫX ≈ 0.19 ± 0.02. These values are quite high,

reflecting the recent high rate of flaring on the Sun. However, the estimates
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(a)

(b)

(a)

(b)

Fig. 1.5. Bayesian blocks applied to one year of GOES events prior to 4 November 2003.

also highlight the limitations of probabilistic forecasting: the prediction for

X-class events is only 20%, yet the largest flare of the last three decades is

about to occur. (Incidentally, three M-class events were also recorded on 4

November 2003.)

The whole-Sun implementation of the method was tested on the GOES

record for 1976-2003 [20]. For each day a prediction was made based on

one year of data prior to the day, following the procedure outlined for 4

November 2003. Comparison was then made with whether or not events

occurred on each day, and the success of the method was evaluated statis-

tically. Table 1.1 provides statistics for the predictions for 1987-2003, for

which years NOAA predictions are also available. The mean-square errors

[see Eq. (1.33)], and the skill scores [see Eq. (1.32)] are listed. The event

statistics method achieves very comparable results to the NOAA method,

and even performs somewhat better, in terms of the skill score, for predic-

tion of X-class flares.
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Fig. 1.6. Posterior distributions for predictions for 4 November 2003. The solid curve
is the posterior for ǫMX, the probability of getting at least one flare in the range M to
X, and the dashed curve is the posterior for ǫX, the probability of getting at least one
X flare. The short vertical lines at the bottom indicate best estimates, using expected
values.

Table 1.1. Comparison with NOAA predictions, for
1987-2003.

Event statistics NOAA

M-X X M-X X

MSE(f, x) 0.143 0.031 0.139 0.032
SS(f, x) 0.258 0.078 0.262 -0.006

1.4. Summary

This chapter presents a tutorial on Bayesian methods, and an example of

application to solar flare prediction. The emphasis has been on the basic

principles, and on the relationship to conventional methods. For more

details on Bayesian approaches, I recommend Refs. [2, 4, 6, 24].
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