
A sunspot's tale

M. S. Wheatland

School of Physics Sydney Institute for Astrophysics The University of Sydney

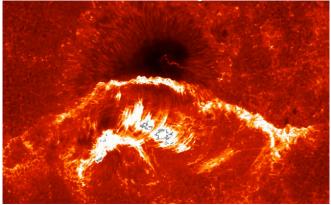
> Sydney City Skywatchers 1 Feb 2010

AR 11029 at 195Å (sohowww.nascom.nasa.gov)

Overview

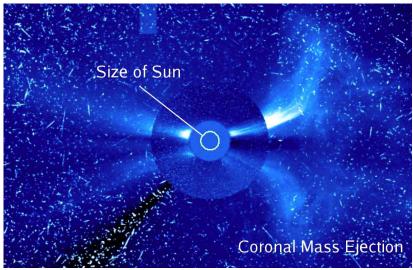
Background

Sunspots and solar flares The flare mechanism Flare statistics Solar cycles Has the Sun lost its spots?

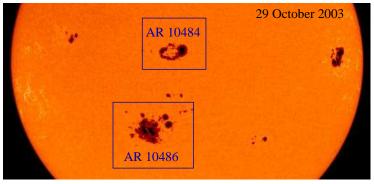

A sunspot's tale

Active region 11029 Analysis of peak-flux distribution Exit, pursued by a bear

Summary


Background – Sunspots and solar flares

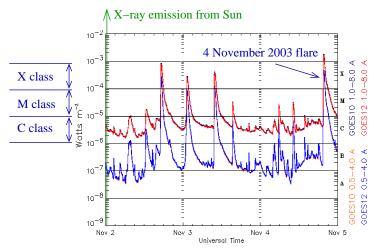
- Sunspots: regions with strong surface magnetic fields
- Sunspot magnetic fields power "solar activity":
 - solar flares magnetic explosions in the atmosphere (corona)
 - Coronal Mass Ejections (CMEs) expulsions of material
- ► A large solar flare caught in the act:


A flare and a sunspot: 12 Dec 2006 [Hinode/SOT]

- Coronal mass ejections
 - CMEs influence our local "space weather"
 - produce storms of energetic particles (Solar Proton Events)

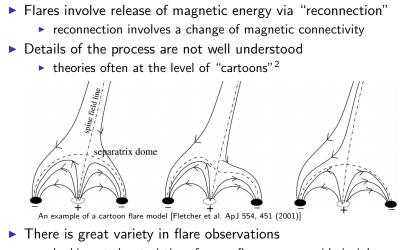
A coronal mass ejection (CME) and a Solar Proton Event [SOHO/LASCO]

- Areas around sunspots are "active regions" (ARs)
 - assigned numbers by US NOAA
- Large regions may produce many flares in crossing the disk
 - e.g. ARs 10484 and 10486 in Oct-Nov 2003
 - AR 10486 produced the largest flare of the modern era¹



ARs 10484 and 10486 produced a sequence of huge flares in October-November 2003 [MDI]

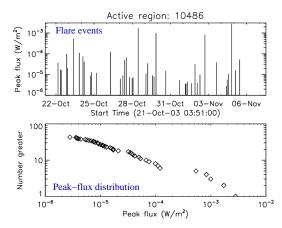
¹For a good read see Stuart Clark 2007, "The Sun Kings," Princeton University Press


▶ Flares are classified by their peak GOES flux (1-8 Å X-rays)

- GOES: Geostationary Observational Environmental Satellites
 - small flares are GOES C-class
 - medium are M-class and large are X-class

Plot of GOES data showing the largest flare of the modern era [NOAA]

The flare mechanism



looking at the statistics of many flares may provide insight

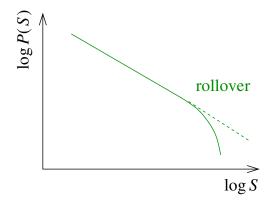
²See e.g. Hugh Hudson's cartoon archive: http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/

Solar flare statistics

- Statistics of GOES flares in AR 10486
 - top panel: peak flux of events versus time
 - Iower panel: peak-flux distribution

Flares in AR 10486 in Oct-Nov 2003 including the biggest flare of the modern era

Flare size distribution

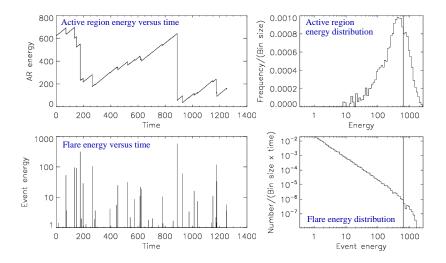

- Size S: a measure of the magnitude
 - e.g. peak GOES flux
 - a proxy for energy
- ► Flares obey a "power-law" size distribution: (e.g. Akabane 1956)

$$P(S) = AS^{-\gamma} \tag{1}$$

- P(S) is number of flares per unit S
- $\blacktriangleright~\gamma$ is the "power-law index" ($\gamma\approx$ 1.5–2)
- a power law is a straight line on a log-log plot
- The power law appears universal
 - same index at different times and in different active regions
- Power laws are surprisingly common (e.g. Newman 2005)
 - sizes of cities, earthquake energies, wealth of individuals, etc.

Flare size distribution

- An upper limit to Eq. (1) must exist
 - ▶ there must be a "rollover" (departure from the power law)
 - representing a limit on the energy available for flaring
 - the magnetic field only has so much energy available
 - but it has proven very hard to identify this "size limit"
 - not identified for individual active regions to date
 - evidence based on many small regions (e.g. Kucera et al. 1997)

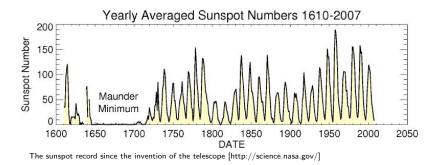


Models for flare statistics

Popular model: "avalanche model" (Lu & Hamilton 1991)

- "cellular automaton" (grid) in a "self-organised critical state"
 - field on a grid close to instability everywhere
 - disturb grid by continually adding random elements
- flare involves avalanche of local energy release events
 - a local event redistributes field
 - causes neighbouring sites to also release energy
- model produces a power-law size distribution
 - departure at very large sizes due to finite grid
- Energy balance models (Rosner & Vaiana 1978)
 - accounting of energy input and loss in an active region
- General stochastic model (Wheatland 2008; 2009)
 - model produces a power-law energy distribution
 - with a rollover at large energy

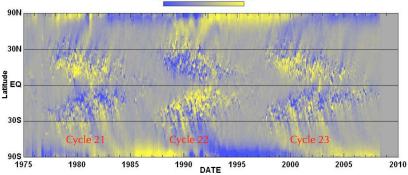
Example of stochastic modelling



Solar cycles

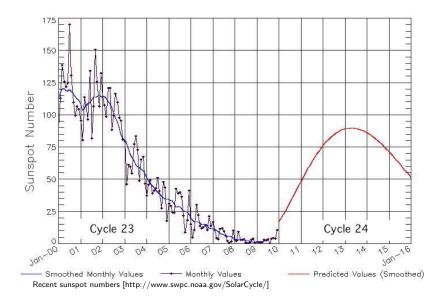
The average sunspot number varies with an 11-year cycle

- but the variations are not very regular
- the maximum number over a cycle varies a lot
- recent cycles are numbered: the last was cycle 23
- and the next is cycle 24...

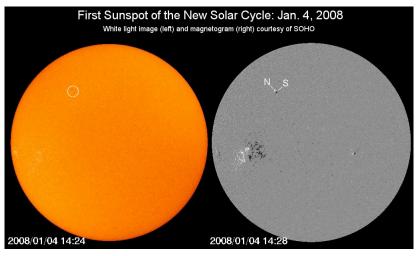

There is much more solar activity at a "solar maximum"

Hale cycle

Patterns in the surface magnetic field repeat every 22 years

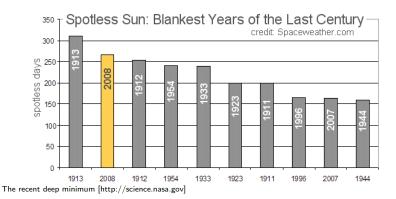

- "polarity": sign of magnetic field
- N is positive (pointing out), S is negative (in)
- Early spots of a new cycle appear at high latitude...
 - ...with a reversed polarity wrt rotation direction
 - hence can identify "new cycle spots"

-10G -5G 0G +5G +10G

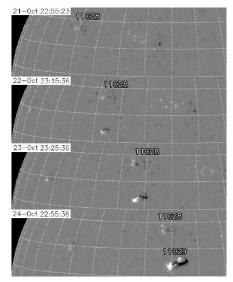

Azimuthal averages of the surface field [NASA/MSFC/NSSTC/Hathaway 2008]

- We are currently at solar minimum
 - the red curve is a prediction

The first new cycle spot – Jan 2008

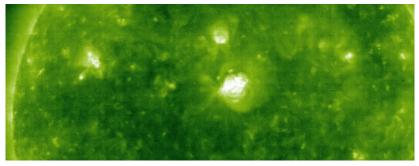

- A small northern hemisphere region with leading S polarity
 - signature of a cycle 24 region

There have been some new cycle spots [http://science.nasa.gov]


Has the Sun lost its spots?

- The new cycle (24) has taken a while to start
 - relatively few new cycle spots
 - 2008 had 266 "spotless" days (73%)
 - need to look back to 1913 for a blanker year (85%)
 - 2009 had 260 spotless days (71%)
- This year has been more promising
 - only two spotless days so far (7%)

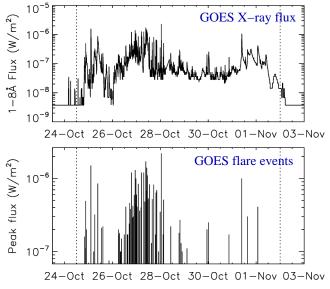
A sunspot's tale – Active region 11029


▶ A new cycle region emerged on the disk on 21-22 Oct 2009

Line-of-sight magnetic field 21-24 Oct 2009 (www.solarmonitor.org)

Development

- Sunspots developed and the region was labelled 11029
- ▶ The region grew in size and complexity
 - but remained relatively small (< 400 μ -hemispheres)
 - an extreme-UV movie shows the development

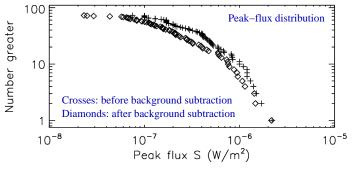

The development of active region 11029 (sohowww.nascom.nasa.gov)

Flaring

AR 11029 became highly flare-productive

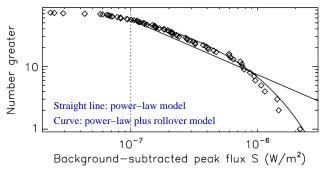
- US Space Weather Prediction Center: 73 GOES events
- all small (one A-class, 60 B-class, and 11 C-class)
- no medium or large flares (M-class or X-class)
- Flares observed in isolation due to the minimum
 - unique opportunity to examine flare statistics
 - chance to catch all flares!
- Basic question:
 - ► is there a departure from the power-law size distribution?

X-ray emission and flare events



Analysis of peak-flux distribution

Background subtraction


- The GOES peak fluxes are not background subtracted
 - the background varies by a factor of ten (see GOES plot)
 - important to background subtract for small events
- > The size distribution for the events changes substantially
 - ▶ it appears to show departure from a simple power law

Background subtraction of the peak fluxes of events

Quantitative analysis of peak-flux distribution

- Two models compared against the data D:
 - a power law and and power law plus exponential rollover
- Bayesian parameter estimation applied
 - ► approach to probability based on Bayes's theorem (e.g. Jaynes 2003)
- Advantages of the Bayesian approach:
 - estimation of parameters does not involve binning the data

Peak-flux distribution and the power-law and power-law plus rollover models

Bayesian model comparison also applied

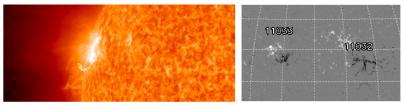
"global odds ratio" is

 $r_{\rm plr/pl}(D) \approx 220$

- relative probability of the models given the data
- assuming both models a priori equally likely
- ▶ power law plus rollover is 200× more probable
- i.e. this model is *strongly* favoured by the data

Interpretation

Size distribution implies the existence of a "size limit"


- a largest flare this region is capable of producing
 - AR 11029 is small and so has a limited amount of energy
 - it is highly flare productive and hence reveals its limit
- This has never before been seen for an active region
 - advantage of observing a small region in isolation

Journal article

- Just published (online):
 - ▶ M.S. Wheatland, Astrophysical J. 710 1324-1334 (20 Feb 2010)

Exit, pursued by a bear

- AR 11029 rotated off the disk on 1-2 Nov
 - it was still flaring (although less vigorously)
- The region returned to the disk on 14 Nov
 - and was relabelled AR 11032
- The region had dispersed it was dying!
 - \blacktriangleright a diffuse β region: not flare-productive

The return of our active region... as AR 11032

Summary

- Sunspots power solar activity e.g. flares and CMEs
 - flares are poorly understood
- Flare statistics provide some insight
 - flare frequency-size distribution is a power law
- Activity varies with an 11/22-year cycle
 - we have been at solar minimum
 - the Sun lost its spots
- Active region 11029 caused a stir in late Oct 2009
 - produced many small flares
 - was seen in isolation due to minimum
 - size distribution shows departure from a power law
 - interpreted in terms of a size-limit for this small region
- List of solar sites including pictures and movies: http://sydney.edu.au/science/physics/~wheat/³

³Easier: search for Mike Wheatland on google.