M.S. Wheatland

School of Physics, University of Sydney

Berkeley SSL, 9 June 2006

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Overview

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Summary

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Solar coronal magnetic fields

Magnetic fields around sunspots power solar flares

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields

Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Spectro-polarimetric instruments provide vector magnetic fields in the low atmosphere

Data: T. Metcalf & K.D. Leka

Boundary value problem to determine B in the corona?

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields

Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Force-free fields

► Force-free magnetic field **B**

$$(
abla imes {f B}) imes {f B} = 0, \qquad
abla \cdot {f B} = 0$$

model for static fields in solar corona

• current density $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$ parallel to \mathbf{B}

Alternative form:

$$\nabla \times \mathbf{B} = \alpha \mathbf{B} \tag{2}$$
$$\mathbf{B} \cdot \nabla \alpha = 0 \tag{3}$$

α = 0, α = const: potential, linear force-free fields
 α = α(r): nonlinear force-free fields

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields

Force-free fields

Problem of slow force-free methods

Method

(1)

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

M.S. Wheatland

Background

Coronal magnetic fields

Force-free fields

Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Summary

Variety of solution methods proposed

- current-field iteration (Grad & Rubin, 1958)
- magneto-frictional (Chodura & Schlüter, 1981)
- optimization (Wheatland, Sturrock & Roumeliotis, 2000)
- NLFFF Workshop 2005 (Schrijver et al., 2006)
 - methods tested on Low & Lou (1990) cases
 - winner: optimization, as implemented by Wiegelmann (Wiegelmann, 2004)

Problem of slow force-free methods

- Order: time as a function of N for N^3 points
- Nonlinear force-free methods are slow
 - optimization: $O(N^5)$ [Inhester & Wiegelmann, 2006: $O(N^4)$]
 - magnetofrictional: $O(N^5)$ (Valori, Kliem & Keppens, 2006)
 - current-field iteration: O(N⁶) (Amari et al., 1999; Wheatland, 2004)
- ▶ New instruments are high resolution, $N \approx 1$ k–2k
 - ► SOLIS/VSM: $N \approx 2k$
 - ▶ SDO/HMI: N = 4k
 - Solar-B/SOT: N = 1k-2k
- Ideally want a method approaching $O(N^3)$

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields

Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Current-field iteration

► Grad & Rubin (1958) approach:

 $\nabla \times \mathbf{B}^{k+1} = \alpha^k \mathbf{B}^k$

$$\mathbf{B}^{k+1} \cdot \nabla \alpha^{k+1} = \mathbf{0} \tag{5}$$

with

$$\left. \hat{\mathbf{z}} \cdot \mathbf{B}^k \right|_{z=0} = \left. \hat{\mathbf{z}} \cdot \mathbf{B}^{\text{obs}} \right|_{z=0},$$
 (6)

$$\alpha^k \Big|_{z=0,B_z>0} = \alpha^{\text{obs}} \Big|_{z=0,B_z>0} \tag{7}$$

 Various implementations (e.g. Sakurai 1981; Amari et al. 1999; Wheatland 2004; Inhester & Wiegelmann 2006)

▶ some specific implementations O(N⁶)

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Metho

(4)

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

New implementation

Separate into potential, non-potential parts:

$$\mathbf{B}^{k+1} = \mathbf{B}_0 + \mathbf{B}_c^{k+1}$$

where

$$abla imes \mathbf{B}_0 = 0 \quad \text{and} \quad \left. \hat{\mathbf{z}} \cdot \mathbf{B}_0 \right|_{z=0} = \left. \hat{\mathbf{z}} \cdot \mathbf{B}^{\text{obs}} \right|_{z=0}$$
(9)

▶ **B**^{*k*+1}_{*c*} may be constructed by solving

$$\nabla \times \mathbf{B}_c^{k+1} = \mu_0 \mathbf{J}_c^k \tag{10}$$

where (Sakurai 1981)

$$\mathbf{J}_{c}^{k} = \begin{cases} \alpha^{k} \mathbf{B}^{k} / \mu_{0} & (z \ge 0) \\ \left[-J_{cx}^{k}(x, y, -z), -J_{cy}^{k}(x, y, -z), J_{cz}^{k}(x, y, -z) \right] & (z < 0) \end{cases}$$

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Backgroun

(8)

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Construction ensures

$$\left. \hat{\mathbf{z}} \cdot \mathbf{B}_c^{k+1} \right|_{z=0} = 0 \tag{11}$$

as required by Eqs. (6) and (9)

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

• Write
$$\mathbf{B}_c^{k+1} =
abla imes \mathbf{A}_c^{k+1}$$
, solve
 $abla^2 \mathbf{A}_c^{k+1} = -\mu_0 \mathbf{J}_c^k$

 $(\nabla \cdot \mathbf{A}_{c}^{k+1} = 0)$ via 3-D FFTs with no explicit BCs

- periodic necessary to pad with zeros
- O(N³ log N³) operations

▶ $\mathbf{B}^{k+1} \cdot \nabla \alpha^{k+1} = 0$ solved by field line tracing

- ▶ for each point **r**, trace field line in both directions
- if field line leaves box via sides or top, $\alpha^{k+1}(\mathbf{r}) = 0$
- ▶ otherwise assign α^{k+1}(r) based on bilinear interpolation at z = 0, B_z > 0
- ► O(N⁴) operations
- ▶ **B**₀ is the starting field for the iteration
- Code is Fortran 90 using OpenMP, all arrays dynamic

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case

Bipolar test case

Example used in Wheatland (2004)

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case

Low & Lou (1990) test case NLFFF Workshop 2006 test case

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case

Low & Lou (1990) test case NLFFF Workshop 2006 test case

▶ Mean current-weighted angle between J and B:

$$\sin \theta_J = \sum_i |\mathbf{J}_i| \sin \theta_i / \sum_i |\mathbf{J}_i| \qquad (12)$$

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case

Low & Lou (1990) test case NLFFF Workshop 2006 test case

Low & Lou (1990) test case

 Test case 1 from NLFFF Workshop 2005 (Schrijver et al., 2006)

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case

Low & Lou (1990) test case NLFFF Workshop

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case

Low & Lou (1990) test case

NLFFF Workshop 2006 test case

NLFFF Workshop 2006 test case

- Test case supplied by Aad van Ballegooijen
 - solar-like test case
 - Aad started with MDI data, 'inserted' a flux rope, performed magnetofrictional relaxation
 - boundary data given to workshop participants
- Boundary data for calculation: 232 × 232
 - calculation on 232 × 232 × 212 grid
- 10 iterations performed
- Time: 2.75 hours on 2×Opteron 270 (9.1 CPU hours)
- Result not a true fixed point of iteration
 - minimum angle between J and B after 7 iterations
 - different results if $\alpha|_{z=0}$ is increased at each iteration to match $\alpha^{obs}|_{z=0}$ at final iteration
- After 10 iterations, current-weighted angle pprox 10.5°

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case

NLFFF Workshop 2006 test case

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case

NLFFF Workshop 2006 test case

Summary

- Nonlinear force-free fields model coronal fields
- Existing nonlinear methods are slow
 - inadequate for application to new datasets
- Fast current-field iteration method developed
 - FFT solution of Ampere's law using current density constructed to impose boundary conditions
 - field line tracing to solve α -updating step
- Method is $O(N^4)$, accurate, simple
 - ▶ performs well on bipole, Low & Lou (1990) tests
 - may be further optimized
- Encouraging results for Aad's test case
 - flux-rope like structure recovered

A fast current-field iteration approach to nonlinear force-free fields

M.S. Wheatland

Background

Coronal magnetic fields Force-free fields Problem of slow force-free methods

Method

Current-field iteration New implementation

Results

Bipolar test case Low & Lou (1990) test case NLFFF Workshop 2006 test case