
Modelling the coronal magnetic field using Hinode (and future) data

> M. S. Wheatland S. A. Gilchrist School of Physics Sydney Institute for Astrophysics University of Sydney

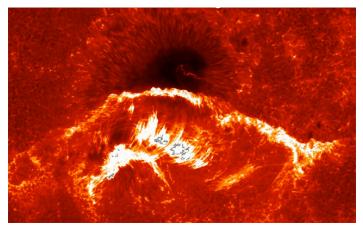
> > S. Régnier University of St Andrews

AOGS 2009 Singapore 14 August 2009

Overview

Background

Solar flares Vector magnetograms The nonlinear force-free model Force-free modelling fails for solar data! The problem – inconsistency Preprocessing – an unsatisfactory procedure


Successful force-free modelling

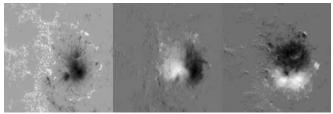
Self-consistency method Application to Hinode

Magneto-hydrostatic modelling Grad-Rubin method

Background: Solar flares

- Magnetic explosions in the Sun's corona
 - large flares influence local space weather
- Motivate need to accurately model the coronal field

Data: Hinode/SOT (AR 10930, 12 Dec 2006)


Background: Vector magnetograms

"Nobody can measure physical quantities of the solar atmosphere" (del Toro Iniesta & Ruiz Cobo 1996)

- Polarisation state of photospheric lines measured
- Vector magnetic field inferred (via "inversion")
 - map of B at photosphere ("vector magnetogram")
 - an inference rather than a measurement (del Toro Iniesta & Ruiz Cobo 1996)
- Problems:
 - instrumental uncertainties
 - validity/reliability of the inversion
 - 180 degree ambiguity in transverse field

New generation of high resolution instruments

- Hinode/SOT: satellite launched in 2006
- SOLIS/VSM: ground based, full disk
- SDO/HMI: to be launched in 2009
- > In principle, boundary conditions for coronal field modelling
 - Hinode/SOT inferred B_z , B_x , B_y

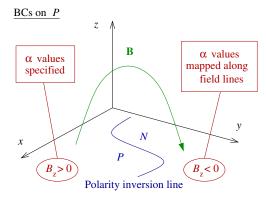
Data: Hinode/SOT (AR 10953 30 Apr 2007)

Background: The nonlinear force-free model

Force-free field B satisfies

$$(\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$
 and $\nabla \cdot \mathbf{B} = 0$ (1)

- "zeroth order" model for the coronal magnetic field (Syrovatskii 1978)
- current density $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$ is parallel to \mathbf{B}
- coupled nonlinear PDEs


Alternative form:

$$abla \times \mathbf{B} = \alpha \mathbf{B} \quad \text{and} \quad \mathbf{B} \cdot \nabla \alpha = 0 \tag{2}$$

- force-free parameter α is constant along field lines

Boundary conditions (Grad & Rubin 1958):

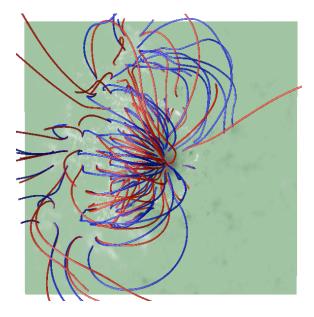
- B_n in boundary
- α in boundary over region where $B_n > 0$ or where $B_n < 0$
 - over "one polarity"
 - we label the polarities P and N respectively

- Force-free equations are hard to solve
 - variety of iterative numerical methods (Wiegelmann 2008)
 - demonstrated to work on test cases (Schrijver et al. 2006)
 - some methods use vector B in boundary as BCs
- Current-field iteration (Grad & Rubin 1958)
 - at iteration k, solve (linear) system

$$\nabla \times \mathbf{B}^{(k+1)} = \alpha^{(k)} \mathbf{B}^{(k)}$$
$$\mathbf{B}^{(k+1)} \cdot \nabla \alpha^{(k+1)} = 0$$
(3)

- Fast current-field iteration (Wheatland 2007)
 - Fourier solution of (3a) ensuring $\nabla \cdot \mathbf{B}^{(k)} = 0$
 - Solution of (3b) by field line tracing ensuring $\nabla \cdot \mathbf{J}^{(k)} = \mathbf{0}$
 - method order N^4 (grid with N^3 points)

Background: Force-free modelling fails for solar data!

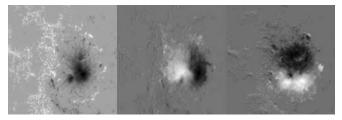

Workshops on application of force-free model to Hinode data

- 2007: AR 10930, 12-13 Dec 2006 (Schrijver et al. 2008)
- 2008: AR 10953, 30 April 2007 (DeRosa et al. 2009)

► Failure 1: different methods produce different solutions

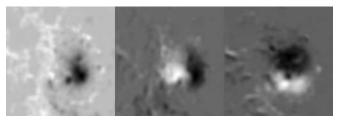
- in particular, energy estimates do not agree
- impossible to reliably estimate free energy!
- Failure 2: individual solutions not self-consistent
 - there are two choices (P and N) for BCs on α
 - the P and N choices produce different solutions
- ► Nevertheless, nonlinear force-free modelling is being used...

- AR 10953 on 30 April 2007 (DeRosa et al. 2009)
 - ▶ *P* solution (blue) and *N* solution (red)


Background: The problem – inconsistency

- Boundary conditions inconsistent with force-free model
 - errors in field determination
 - field at photospheric level is forced (Metcalf et al. 1995)
- ► Necessary conditions for a force-free field (Molodenskii 1969)
 - boundary integrals representing net force, torque
 - zero for a force-free field
 - non-zero for solar boundary data
- "Preprocessing" is used to enforce these conditions... (Wiegelmann et al. 2006)
 - ...but the conditions are necessary, not sufficient
 - preprocessed BCs remain inconsistent with force-free model (DeRosa et al. 2009)
 - solutions still disagree, still inconsistent (DeRosa et al. 2009)
 - and preprocessing smooths the data...

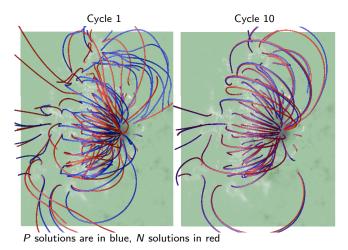
Background: Preprocessing – an unsatisfactory procedure


Data from 30 April 2007

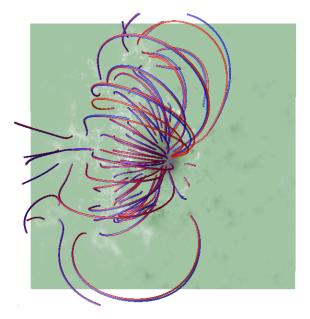
• Hinode/SOT inferred B_z , B_x , B_y

Data from 30 April 1967?

preprocessed data used at 2008 workshop (DeRosa et al. 2009)

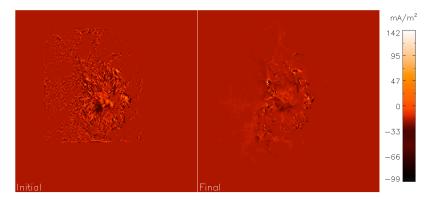


Successful force-free modelling: Self-consistency method


- Alternative approach:
 - Find the "closest" force-free solution to the observed data
- Self-consistency procedure (Wheatland & Régnier 2009, ApJ 700 L88)
 - ▶ 1. Construct *P* and *N* solutions (current-field iteration)
 - *P* solution maps boundary values $\alpha_0 \pm \sigma_0$ from $P \rightarrow N$
 - *N* solution maps boundary values $\alpha_0 \pm \sigma_0$ from $N \rightarrow P$
 - the two mappings define new boundary values $\alpha_1 \pm \sigma_1$
 - 2. Apply Bayesian decision making
 - given $\alpha_0 \pm \sigma_0$ and $\alpha_1 \pm \sigma_1$, decide most probable value $\alpha_2 \pm \sigma_2$
 - Bayes's theorem: α_2 is an uncertainty-weighted average value
 - α_2 values should be closer to consistency
 - ▶ 3. Iterate
 - construct *P* and *N* solution starting with $\alpha_2 \pm \sigma_2$
 - each iteration is a "self consistency cycle"
 - should achieve consistency (P and N solutions agree)

Successful force-free modelling: Application to Hinode

- AR 10953 on 30 April 2007
 - 10 self-consistency cycles
 - > 20 current-field iterations for each solution
 - unpreprocessed boundary data



- Self-consistency achieved!
 - quantitative measures confirm convergence

Currents reduced in magnitude overall by averaging

but basic structures remain

- Application a "proof of concept"
 - uncertainties were not assigned
 - Hinode data was embedded in MDI data: undesirable

Magneto-hydrostatic modelling: Grad-Rubin method

- Vector magnetogram data imply non-magnetic forces
 - pressure gradients, flows, gravity forces
- Magneto-hydrostatics is next simplest model

$$abla p = \mathbf{J} \times \mathbf{B}$$
 and $abla \times \mathbf{B} = \mu_0 \mathbf{J}$ and $abla \cdot \mathbf{B} = 0$ (4)

inclusion of pressure force

Spectro-polarimetric data provides thermodynamic information

possible to infer p values
 (e.g. Ruiz Cobo & del Toro Iniesta 1992; Degl'Innocenti & Landolfi 2004)

► Grad-Rubin iteration may be applied to (4) (Grad & Rubin 1958)

- generalisation of current field iteration
- not substantially more difficult in principle
- boundary conditions B_n plus p and J_n over one polarity
- a code is being developed
- Also possible to include a gravity force

Summary

- Vector magnetograms enable coronal field modelling
- Nonlinear force-free model appropriate in the corona
 - but photospheric boundary data is not force-free
 - inconsistency between model, data
 - nonlinear force-free modelling fails!
 - preprocessing is not a solution to the problem
- Self consistency method: successful force-free modelling
 - calculate two possible (inconsistent) solutions
 - \blacktriangleright use solutions and Bayes's theorem to decide on new BCs on α
 - iterate to achieve consistency
 - demonstrated to work on Hinode/SOT data
- Magneto-hydrostatic modelling
 - solar boundary conditions on pressure may be obtained
 - Grad-Rubin iteration may be applied