The magnetic field and its consequences in solar eruptive regions

M. S. Wheatland and S. A. Gilchrist

School of Physics Sydney Institute for Astronomy The University of Sydney

Asia Oceania Geosciences Meeting Taipei 8-12 August 2011

Nonlinear force-free model for AR 11029 (Gilchrist, Wheatland & Leka 2011)

Overview

Background

Flares, eruptions, and space weather The data – vector magnetograms Nonlinear force-free modeling The inconsistency problem Self-consistency recipe

Modeling AR 11029

A dynamic region at deep minimum Data Results

Modeling eruptive regions

Summary

Background: Flares, eruptions, and space weather

- Sunspot magnetic fields power large-scale solar activity
 - solar flares, large eruptive events (CMEs)
- Space weather effects motivate modeling (US National Research Council workshop report, Baker et al. 2008)
 - ► potential for large economic losses (Odenwald, Green & Taylor 2006)

SDO 171Å image of AR 11164 (Feb 2011) which produced a number of eruptions (http://sdo.gsfc.nasa.gov/)

Background: The data – vector magnetograms

Nobody can measure physical quantities of the solar atmosphere (Del Toro Iniesta & Ruiz Cobo (1996), Sol. Phys. 164, 169)

Zeeman effect imprints B on photospheric lines (del Toro Iniesta 2003)

- ▶ Stokes polarisation profiles $I(\lambda)$, $Q(\lambda)$, $U(\lambda)$, $V(\lambda)$ measured
- Stokes inversion' is the process of inferring magnetic field
- an inference rather than a direct measurement/observation
- ▶ 180° ambiguity in B_{\perp} must be resolved

(Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009)

- Vector magnetogram: photospheric map of $\mathbf{B} = (B_x, B_y, B_z)$
 - Iocal heliocentric co-ordinates (z radially out)
 - common to neglect curvature on active region scale
- Vector magnetograms are not direct measurements/observations
 - inversion results are very method and model dependent

- In principle, VMs give BCs for coronal field modeling
 - referred to as coronal magnetic field reconstruction
- Vertical current density J_z may be estimated at photosphere:

$$\mu_0 J_z|_{z=0} = \left. \frac{\partial B_y}{\partial x} \right|_{z=0} - \left. \frac{\partial B_x}{\partial y} \right|_{z=0}$$
(1)

New generation of instruments

- US NSO Synoptic Long-term Investigations of the Sun
 - Vector Spectro-magnetograph (SOLIS/VSM)

(Jones et al. 2002)

- Hinode satellite
 - Solar Optical Telescope Spectro-Polarimeter (SOT/SP) (Tsuneta et al. 2008)
- Solar Dynamics Observatory satellite
 - Helioseismic & Magnetic Imager (SDO/HMI) (Scherrer et al. 2006)

Background: Nonlinear force-free modeling

► Force-free model for coronal magnetic field **B**:

 $\mathbf{J} \times \mathbf{B} = 0$ and $\nabla \cdot \mathbf{B} = 0$

(2)

• $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$ is electric current density

- physics: static model in which Lorentz force dominates
- coupled nonlinear PDEs
- Writing $\mathbf{J} = \alpha \mathbf{B} / \mu_0$ (**J** is parallel to **B**):

$$\mathbf{B} \cdot \nabla \alpha = \mathbf{0} \quad \text{and} \quad \nabla \times \mathbf{B} = \alpha \mathbf{B} \tag{3}$$

 $\blacktriangleright \alpha$ is the force-free parameter

Mini glossary

Model: a solution to the force-free model *Solution:* a solution to the model

- ► Boundary conditions: (Grad & Rubin 1958)
 - B_z over z = 0
 - α over z = 0 where $B_z > 0$ or where $B_z < 0$
 - α is prescribed over one polarity
 - ▶ we refer to the polarities as *P* and *N* respectively
- Vector magnetograms give two sets of boundary conditions
 - ▶ values of $\alpha = \mu_0 J_z / B_z$ over both *P* and *N* are available
- ► Methods of solution of Eqs. (3) are iterative (e.g. Wiegelmann 2008)
- Current-field iteration/Grad-Rubin iteration (Grad & Rubin 1958)
 - ► at iteration k solve the linear system

$$\mathbf{B}^{[k-1]} \cdot \nabla \alpha^{[k]} = 0 \quad \text{and} \quad \nabla \times \mathbf{B}^{[k]} = \alpha^{[k]} \mathbf{B}^{[k-1]} \tag{4}$$

• BCs imposed on $B_z^{[k]}$ and on $\alpha^{[k]}$ over P or N

Mini glossary

P solution: a solution using α values over z = 0 where $B_z > 0$ *N* solution: a solution using α values over z = 0 where $B_z < 0$

Background: The inconsistency problem

- Force-free methods work for test cases but fail for solar data (Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008; DeRosa et al. 2009)
 - e.g. *P* and *N* solutions do not agree for a Grad-Rubin method
 - some force-free methods use B|_{z=0} as BCs (Wheatland, Sturrock & Roumeliotis 2000; Wiegelman 2000)
 - ▶ the 'solutions' have $\mathbf{J} \times \mathbf{B} \neq 0$ and/or $\nabla \cdot \mathbf{B} \neq 0$ somewhere
- Vector magnetogram BCs inconsistent with force-free model
 - errors in measurements and field inference
 - field at photospheric level is not force free (Metcalf et al. 1995)
 - necessary conditions for a force-free field are not met (Molodenskii 1969)
- 'Preprocessing' does not solve this problem
 - 'preprocess': modify BCs to meet necessary model conditions (Wiegelmann et al. 2006)
 - preprocessed BCs remain inconsistent with the model (DeRosa et al. 2009)
- ► In general different energies for *P* and *N* solutions

Illustration of the problem: AR 10953 on 30 June 2007

Inconsistent solutions from vector magnetogram BCs: (a) P solution; (b) N solution (Wheatland & Leka 2011)

Background: Self-consistency recipe

(Wheatland & Régnier 2009; Wheatland & Leka 2011)

- 1. Calculate P and N solutions using Grad-Rubin (Wheatland 2006; 2007)
 - BCs: unpreprocessed vector magnetogram data
- 2. Adjust boundary values using solutions and uncertainties
 - Each solution has α constant along **B**...
 - ...so they define two sets of α values at z = 0:

$$\alpha_P \pm \sigma_P$$
 and $\alpha_N \pm \sigma_N$ (5)

- Each is consistent with the force-free model
- Bayesian probability is used to estimate 'true' values:

$$\alpha_{\text{est}} = \frac{\alpha_P / \sigma_P^2 + \alpha_N / \sigma_N^2}{1 / \sigma_P^2 + 1 / \sigma_N^2} \quad \sigma_{\text{est}} = \left(1 / \sigma_P^2 + 1 / \sigma_N^2\right)^{-\frac{1}{2}} \quad (6)$$

Still inconsistent but closer to consistency

3. Iterate 1. & 2. until P and N solutions agree (α_{est} consistent)

Step 1. uses α_{est} for BCs at subsequent iterations

Mini glossary

Iteration: one step in a procedure, e.g. a Grad-Rubin step from $k \rightarrow k + 1$ *Self-consistency cycle:* sequence of G-R iterations to produce P and N solutions

- Self consistency provides a single energy value
- Method previously applied to AR 10953

(Wheatland & Régnier 2009; Wheatland & Leka 2011)

Modeling AR 11029: A dynamic region at deep minimum (Wheatland 2011)

Active region 11029 emerged on the disk on 21-22 Oct 2009

Line-of-sight magnetic field 21-24 Oct (www.solarmonitor.org) STEREO A on (sohowww.nascom.nasa.gov)

- Highly flare-productive but small (< 400 μ -hemispheres)
 - observed at a time with very low soft X-ray background
 - ► 73 small GOES events: one A-class, 60 B-class, and 11 C-class
 - produced many eruptions (SOHO LASCO CME catalog)

Time history of X-rays from AR 11029, and the 73 flare events for the region (Wheatland 2011)

Largest flare was C2.2

a departure from the power-law flare size¹ distribution?

Peak-flux distributions for GOES events and power-law/power-law plus rollover models (Wheatland 2011)

¹Size S: a measure of the magnitude, e.g. peak GOES flux, which is a proxy for energy.

► Flares obey a power-law size distribution: (e.g. Akabane 1956)

$$f(S) = AS^{-\gamma} \tag{7}$$

- f(S) is number of flares per unit time, per unit S
- power-law index $\gamma \approx 1.5-2$
- universal: same index at different times, in different regions
- An upper limit to the power law must exist
 - there is a finite amount of energy available for flaring
 - however it has proven very hard to identify this
 - some evidence based on many small regions (e.g. Kucera et al. 1997)
- Is the AR 11029 distribution revealing a limit on the energy?
- Idea: estimate the 'free' magnetic energy of the region...
 - ...from self-consistent nonlinear force-free modeling
 - this provides an upper limit to the energy of the largest flare
 - how does it compare with the largest observed flare?

Modeling AR 11029: Data (Gilchrist, Wheatland & Leka 2011)

- Magnetogram based on Hinode SP and MDI data (27 Oct)
 - uncertainties from Stokes inversion

Boundary conditions on B_z (upper) and J_z (lower) (Gilchrist, Wheatland & Leka 2011)

Modeling AR 11029: Results (Gilchrist, Wheatland & Leka 2011)

Convergence in energy of self-consistency procedure

Energy of P solution (+) and N solution (\diamond) versus self-consistency cycle (Gilchrist, Wheatland & Leka 2011)

- Self-consistent solution from Hinode/MDI data
 - calculation on a $440 \times 300 \times 200$ grid
 - 20 Grad-Rubin iterations per cycle

Self-consistent P solution (blue curves) and N solution (red curves) (Gilchrist, Wheatland & Leka 2011)

- Energy of self-consistent solution $E/E_0 = 1.04$
 - large potential field energy: $E_0 = 1.7 \times 10^{33} \text{ erg}$

• free energy $E_f = E - E_0 = 6 \times 10^{31}$ erg

- Early self-consistency cycles do not converge strictly
 - oscillations in energy (a symptom of inconsistency)
 - introduces some arbitrariness in the modeling
 - results depend on the number N_{GR} of GR iterations
- Modeling repeated with $N_{GR} = 30$
 - results very similar which suggests the process is robust
 - order of magnitude free energy estimate: $E_f \sim 10^{32} \, {
 m erg}$

G-R	Sol.	Е	E ₀	$E_f = E - E_0$
iterations		$(10^{33}{ m erg}$)	$(10^{33} {\rm erg})$	$(10^{31} {\rm erg})$
20	Р	1.769	1.707	6.16
	N	1.772	1.707	6.50
30	Р	1.787	1.707	7.94
	N	1.791	1.707	8.35

Energy-GOES peak flux scaling from the literature

RHESSI nonthermal electron energy estimates versus GOES peak flux for 14 flares (Gilchrist, Wheatland & Leka 2011)

- Recall the hypothesis:
 - absence of large GOES events due to limited energy of region?
- But $E_f \sim 10^{32}$ erg is consistent with an X-class flare
 - ► the largest observed flare was C2.2
 - hence the results do not support the hypothesis
- SOLIS/VSM vector magnetogram data for 24 Oct available
 - the region was newly emerged and smaller at this time
 - the flaring rate was much smaller
- ▶ Self-consistent solution energy for 24 Oct: $E \sim 10^{29}$ erg
 - consistent with C- or M-class flare energy

Modeling eruptive regions

- Force-free model is static so eruption is not described
- However for magnetograms before and after eruptions:
 - construct self-consistent solutions
 - investigate e.g. changes in connectivity, energy
- Energy estimates may assist in forecasting eruptions...
 - ...or constraining 'largest possible' event
- Global nature of many eruptions a difficulty for modeling
 - SDO shows separate regions on disk often involved
 - full disk modeling based on data is needed

SDO 304Å image of June 7 2011 eruptive event (http://sdo.gsfc.nasa.gov/)

Summary

- Vector magnetograms give BCs for coronal field modeling
 - but the modeling is difficult
- The nonlinear force-free model is popular
 - but vector magnetogram data are inconsistent with the model
 - the model gives unreliable results for solar data
 - the self-consistency procedure provides one solution...
 - ...with a unique energy
- Self-consistency modeling for AR 11029
 - motivated by non power-law flare size distribution
 - hypothesis: evidence for an upper limit to region energy?
- Self-consistent magnetic free energy on 27 Oct: $E_f \sim 10^{32} \, {
 m erg}$
 - based on Hinode SOT/SP magnetogram
 - consistent with X-class event
 - does not support hypothesis

Application of self-consistency modeling to eruptions discussed