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Background: Flares, CMEs and space weather

I Sunspot magnetic fields power large-scale solar activity
I solar flares, Coronal Mass Ejections

I Space weather effects motivate modelling
(US National Research Council workshop report, Baker et al. 2008)

I potential for large economic losses (Odenwald, Green & Taylor 2006)

12 Dec 2006 X-class flare (Hinode/SOT)



Background: The data – vector magnetograms

Nobody can measure physical quantities of the solar atmosphere
(Del Toro Iniesta & Ruiz Cobo (1996), Sol. Phys. 164, 169)

I Zeeman effect imprints B on photospheric lines (del Toro Iniesta 2003)

I Stokes polarisation profiles I (λ), Q(λ), U(λ), V (λ) measured
I ‘Stokes inversion’ is the process of inferring magnetic field
I an inference rather than a direct measurement/observation

I 180◦ ambiguity in B⊥ must be resolved
(Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009)

I Vector magnetogram: photospheric map of B = (Bx ,By ,Bz)
I local heliocentric co-ordinates (z radially out)
I common to neglect curvature on active region scale

I Vector magnetograms are not direct
measurements/observations

I inversion results are very method and model dependent



The data: (a) Sunspot image and line observations; (b) Stokes profiles for sunspot and quiet Sun observations;

(c) vector magnetogram field values (Advanced Stokes Polarimeter/Imaging Vector Magnetograph)



I In principle, VMs give BCs for coronal field modelling
I referred to as coronal magnetic field reconstruction

I Vertical current density Jz may be estimated at photosphere:
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I New generation of instruments
I US NSO Synoptic Long-term Investigations of the Sun

Vector Spectro-magnetograph (SOLIS/VSM)
(Jones et al. 2002)

I Hinode Solar Optical Telescope Spectro-Polarimeter (SOT/SP)
(Tsuneta et al. 2008)

I Solar Dynamics Observatory Helioseismic & Magnetic Imager
(SDO/HMI) (Scherrer et al. 2006)



Background: Nonlinear force-free modelling

I Force-free model for coronal magnetic field:

J× B = 0 and ∇ · B = 0 (2)

I J = µ−1
0 ∇× B is electric currrent density

I physics: static model in which Lorentz force dominates
I coupled nonlinear PDEs

I Writing J = αB/µ0 (J is parallel to B):

B · ∇α = 0 and ∇× B = αB (3)

I α is the force-free parameter



I Boundary conditions: (Grad & Rubin 1958)

I Bz over z = 0
I α over z = 0 where Bz > 0 or where Bz < 0

I over one polarity
I we refer to the polarities as P and N respectively

I Vector magnetograms give two sets of boundary conditions
I values of α = µ0Jz/Bz over both P and N are available

I Methods of solution of Eqs. (3) are iterative (e.g. Wiegelmann 2008)

I Current-field iteration/Grad-Rubin iteration (Grad & Rubin 1958)

I at iteration k solve the linear system

B[k−1] · ∇α[k] = 0 and ∇× B[k] = α[k]B[k−1] (4)

I BCs imposed on B
[k]
z and on α[k] over P or N



Background: The inconsistency problem

I Force-free methods work for test cases but fail for solar data
(Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008; DeRosa et al. 2009)

I different methods give different fields
I P and N solutions do not agree for a Grad-Rubin method
I some force-free methods use B|z=0 as BCs

(Wheatland, Sturrock & Roumeliotis 2000; Wiegelman 2000)

I the ‘solutions’ have J× B 6= 0 and/or ∇ · B 6= 0
I they fail to solve the model

I Vector magnetogram BCs inconsistent with force-free model
I errors in measurements and field inference
I field at photospheric level is not force free (Metcalf et al. 1995)

I necessary conditions for a force-free field are not met
(Molodenskii 1969)

I Force-free models from vector magnetograms are unreliable



I Illustration of the problem: AR 10953 on 30 June 2007

Inconsistent solutions from vector magnetogram BCs: (a) P solution; (b) N solution (Wheatland & Leka 2011)



I One approach to the problem is ‘preprocessing’(Wiegelmann et al. 2006)

I BCs modified to satisfy necessary force-free conditions...
I ...but they are necessary, not sufficient
I preprocessed BCs are inconsistent with the force-free model

(DeRosa et al. 2009)

I this procedure typically also smooths, which is undesirable

I Alternative approach:
I find the ‘closest’ force-free solution to the observed data



Background: Self-consistency recipe (Wheatland & Régnier 2009)

1. Calculate P and N solutions using Grad-Rubin (Wheatland 2006; 2007)

I BCs: unpreprocessed vector magnetogram data

2. Adjust boundary values using solutions and uncertainties

I Each solution has α constant along B...

I ...so they define two sets of α values at z = 0:

αP ± σP and αN ± σN (5)

I Each is consistent with the force-free model

I Bayesian probability is used to estimate ‘true’ values:

αest =
αP/σ2

P + αN/σ2
N

1/σ2
P + 1/σ2

N

σest =
(
1/σ2

P + 1/σ2
N

)− 1
2 (6)

I Still inconsistent but closer to consistency

3. Iterate 1. & 2. until P and N solutions agree (αest consistent)

I Step 1. uses αest for BCs at subsequent iterations



I Initial test on AR 10953 (Wheatland & Régnier 2009)

I method shown to work: a ‘proof of concept’
I but uncertainties not included
I self-consistent solution near to potential

I energy E/E0 = 1.02 (potential field energy is E0)

Self-consistent P (left) and N (right) solutions for AR 10953 (Wheatland & Régnier 2009)



Modelling AR 10953 with uncertainties: Data
(Wheatland & Leka 2011)

I AR 10953 on 30 April 2007 is again the region of study
I many force-free methods applied before (De Rosa et al. 2009)

I self-consistent modelling test case (Wheatland & Régnier 2009)

I Hinode SOT/SP and MDI data used
I new treatment: improved data merging and uncertainties

Hinode/XRT broadband soft X-ray image (Hinode/XRT)



I MDI data used to provide a wider FOV

I Uncertainties derived from Stokes inversion fit: ‘lower limits’
I Boundary values α0 ± σ0 calculated from Bi ± σBi

I points in MDI region assigned maximal uncertainties

Vector magnetogram Bz values (left) and Jz values (right) (Wheatland & Leka 2011)



Vector magnetogram Bz values (left) and Jz values (right) (Wheatland & Leka 2011)



Modelling AR 10953 with uncertainties: Results
(Wheatland & Leka 2011)

I 10 self consistency cycles used
I grid size is 313× 313× 300 (spacing is 0.8 arcsec)
I NGR = 30 Grad-Rubin iterations per cycle
I currents crossing side and top boundaries omitted (Wheatland 2007)

I Procedure converges in < 10 cycles
I energy of final solution(s) is E/E0 = 1.08

I significantly non-potential

I energies of P and N solutions differ by < 0.03%
I self-consistency is achieved

I Bx and By are modified by self-consistency procedure
I the changes exceed the nominal uncertainties
I but are similar to those imposed by preprocessing
I this implies the initial data are quite inconsistent

I BCs on α are preserved at locations with small σ
I attention is paid to the most believable inference



Self-consistent solutions: (a) P solution; (b) N solution (Wheatland & Leka 2011)



Energy of P solution (+) and N solution (�) versus self-consistency cycle (Wheatland & Leka 2011)



Initial BCs on Jz (left column) and self-consistent values (right column) (Wheatland & Leka 2011)



I Grad-Rubin iteration does not converge strictly initially
I but oscillates in energy (another symptom of inconsistency)
I which introduces some arbitrariness in the modelling

I a dependence on the number NGR of GR iterations

I Modelling repeated with NGR = 20 and NGR = 40
I results very similar which suggests the process is robust
I energies of two new solutions are E/E0 = 1.08 to 1 s.f.
I minor differences in final BCs and field structure

I Energy of solution is higher when uncertainties are included
I large Jz values in strong field regions have small σ
I these values are preserved giving higher E

I Energy E/E0 = 1.08 is between initial N and P energies
I in the range of energies found in other studies

(de Rosa et al. 2009; Canou & Amari 2010)

I higher GR-method energies in other studies are the N solution
I the P solution is ignored (e.g. Canou & Amari 2010)



Signal to noise ratio in α0 and the BCs on Jz for the solutions with NGR = 20, 30, 40 (Wheatland & Leka 2011)



Summary

I Vector magnetograms give BCs for coronal field modelling
I the field values are inferences not measurements
I the modelling is difficult

I The nonlinear force-free model is popular
I but vector magnetogram data are inconsistent with the model
I nonlinear force-modelling gives unreliable results
I the self-consistency procedure provides one solution

I Self-consistency modelling for AR 10953
I relative uncertainties in boundary data accounted for
I significantly non-potential force-free model field obtained
I results robust against different choices in the method

I Self-consistency is a promising method
I however more physical modelling should be pursued
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