Modelling magnetic fields in the corona using nonlinear force-free fields

M. S. Wheatland¹ and K. D. Leka²

¹School of Physics Sydney Institute for Astronomy The University of Sydney

²North West Research Associates Colorado Research Associates Division

1st APSPM, Indian Institute of Astrophysics Bangalore, March 2011

Model for AR 10953 field (Wheatland & Leka 2011)

Overview

Background

Flares, CMEs and space weather The data – vector magnetograms Nonlinear force-free modelling The inconsistency problem Self-consistency recipe

Modelling AR 10953 with uncertainties Data Results

Summary

Background: Flares, CMEs and space weather

- Sunspot magnetic fields power large-scale solar activity
 - solar flares, Coronal Mass Ejections
- Space weather effects motivate modelling (US National Research Council workshop report, Baker et al. 2008)
 - potential for large economic losses (Odenwald, Green & Taylor 2006)

12 Dec 2006 X-class flare (Hinode/SOT)

Background: The data – vector magnetograms

Nobody can measure physical quantities of the solar atmosphere (Del Toro Iniesta & Ruiz Cobo (1996), Sol. Phys. 164, 169)

Zeeman effect imprints B on photospheric lines (del Toro Iniesta 2003)

- Stokes polarisation profiles $I(\lambda)$, $Q(\lambda)$, $U(\lambda)$, $V(\lambda)$ measured
- Stokes inversion' is the process of inferring magnetic field
- an inference rather than a direct measurement/observation
- ▶ 180° ambiguity in B_{\perp} must be resolved

(Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009)

- Vector magnetogram: photospheric map of $\mathbf{B} = (B_x, B_y, B_z)$
 - Iocal heliocentric co-ordinates (z radially out)
 - common to neglect curvature on active region scale
- Vector magnetograms are not direct measurements/observations
 - inversion results are very method and model dependent

The data: (a) Sunspot image and line observations; (b) Stokes profiles for sunspot and quiet Sun observations; (c) vector magnetogram field values (Advanced Stokes Polarimeter/Imaging Vector Magnetograph)

- In principle, VMs give BCs for coronal field modelling
 - referred to as coronal magnetic field reconstruction
- Vertical current density J_z may be estimated at photosphere:

$$\mu_0 J_z|_{z=0} = \left. \frac{\partial B_y}{\partial x} \right|_{z=0} - \left. \frac{\partial B_x}{\partial y} \right|_{z=0}$$
(1)

- New generation of instruments
 - US NSO Synoptic Long-term Investigations of the Sun Vector Spectro-magnetograph (SOLIS/VSM) (Jones et al. 2002)
 - Hinode Solar Optical Telescope Spectro-Polarimeter (SOT/SP) (Tsuneta et al. 2008)
 - Solar Dynamics Observatory Helioseismic & Magnetic Imager (SDO/HMI) (Scherrer et al. 2006)

Background: Nonlinear force-free modelling

Force-free model for coronal magnetic field:

 $\mathbf{J} \times \mathbf{B} = 0$ and $\nabla \cdot \mathbf{B} = 0$ (2)

• $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$ is electric current density

- physics: static model in which Lorentz force dominates
- coupled nonlinear PDEs

• Writing $\mathbf{J} = \alpha \mathbf{B} / \mu_0$ (**J** is parallel to **B**):

 $\mathbf{B} \cdot \nabla \alpha = 0 \quad \text{and} \quad \nabla \times \mathbf{B} = \alpha \mathbf{B} \tag{3}$

• α is the force-free parameter

- Boundary conditions: (Grad & Rubin 1958)
 - B_z over z = 0
 - α over z = 0 where $B_z > 0$ or where $B_z < 0$
 - over one polarity
 - we refer to the polarities as P and N respectively
- Vector magnetograms give two sets of boundary conditions
 - values of $\alpha = \mu_0 J_z / B_z$ over both *P* and *N* are available
- ► Methods of solution of Eqs. (3) are iterative (e.g. Wiegelmann 2008)
- Current-field iteration/Grad-Rubin iteration (Grad & Rubin 1958)
 - at iteration k solve the linear system

$$\mathbf{B}^{[k-1]} \cdot \nabla \alpha^{[k]} = 0 \quad \text{and} \quad \nabla \times \mathbf{B}^{[k]} = \alpha^{[k]} \mathbf{B}^{[k-1]}$$
(4)

• BCs imposed on $B_z^{[k]}$ and on $\alpha^{[k]}$ over *P* or *N*

Background: The inconsistency problem

- Force-free methods work for test cases but fail for solar data (Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008; DeRosa et al. 2009)
 - different methods give different fields
 - P and N solutions do not agree for a Grad-Rubin method
 - some force-free methods use B|_{z=0} as BCs (Wheatland, Sturrock & Roumeliotis 2000; Wiegelman 2000)
 - ▶ the 'solutions' have $\mathbf{J} \times \mathbf{B} \neq 0$ and/or $\nabla \cdot \mathbf{B} \neq 0$
 - they fail to solve the model
- Vector magnetogram BCs inconsistent with force-free model
 - errors in measurements and field inference
 - field at photospheric level is not force free (Metcalf et al. 1995)
 - necessary conditions for a force-free field are not met (Molodenskii 1969)
- Force-free models from vector magnetograms are unreliable

Illustration of the problem: AR 10953 on 30 June 2007

Inconsistent solutions from vector magnetogram BCs: (a) P solution; (b) N solution (Wheatland & Leka 2011)

One approach to the problem is 'preprocessing' (Wiegelmann et al. 2006)

- BCs modified to satisfy necessary force-free conditions...
- ...but they are necessary, not sufficient
- preprocessed BCs are inconsistent with the force-free model (DeRosa et al. 2009)
- this procedure typically also smooths, which is undesirable
- Alternative approach:
 - find the 'closest' force-free solution to the observed data

Background: Self-consistency recipe (Wheatland & Régnier 2009)

- 1. Calculate P and N solutions using Grad-Rubin (Wheatland 2006; 2007)
 - BCs: unpreprocessed vector magnetogram data
- 2. Adjust boundary values using solutions and uncertainties
 - Each solution has α constant along **B**...
 - ...so they define two sets of α values at z = 0:

$$\alpha_P \pm \sigma_P$$
 and $\alpha_N \pm \sigma_N$ (5)

- Each is consistent with the force-free model
- Bayesian probability is used to estimate 'true' values:

$$\alpha_{\text{est}} = \frac{\alpha_P / \sigma_P^2 + \alpha_N / \sigma_N^2}{1 / \sigma_P^2 + 1 / \sigma_N^2} \quad \sigma_{\text{est}} = \left(1 / \sigma_P^2 + 1 / \sigma_N^2\right)^{-\frac{1}{2}} \quad (6)$$

- Still inconsistent but closer to consistency
- 3. Iterate 1. & 2. until P and N solutions agree (α_{est} consistent)
 - ▶ Step 1. uses α_{est} for BCs at subsequent iterations

- ► Initial test on AR 10953 (Wheatland & Régnier 2009)
 - method shown to work: a 'proof of concept'
 - but uncertainties not included
 - self-consistent solution near to potential
 - energy $E/E_0 = 1.02$ (potential field energy is E_0)

Self-consistent P (left) and N (right) solutions for AR 10953 (Wheatland & Régnier 2009)

Modelling AR 10953 with uncertainties: Data

(Wheatland & Leka 2011)

- AR 10953 on 30 April 2007 is again the region of study
 - many force-free methods applied before (De Rosa et al. 2009)
 - self-consistent modelling test case (Wheatland & Régnier 2009)
- Hinode SOT/SP and MDI data used
 - new treatment: improved data merging and uncertainties

Hinode/XRT broadband soft X-ray image (Hinode/XRT)

- MDI data used to provide a wider FOV
- Uncertainties derived from Stokes inversion fit: 'lower limits'
- ▶ Boundary values $\alpha_0 \pm \sigma_0$ calculated from $B_i \pm \sigma_{B_i}$
 - points in MDI region assigned maximal uncertainties

Vector magnetogram B_z values (left) and J_z values (right) (Wheatland & Leka 2011)

Vector magnetogram B_z values (left) and J_z values (right) (Wheatland & Leka 2011)

Modelling AR 10953 with uncertainties: Results

(Wheatland & Leka 2011)

- 10 self consistency cycles used
 - grid size is $313 \times 313 \times 300$ (spacing is 0.8 arcsec)
 - $N_{GR} = 30$ Grad-Rubin iterations per cycle
 - currents crossing side and top boundaries omitted (Wheatland 2007)
- ▶ Procedure converges in < 10 cycles
 - energy of final solution(s) is $E/E_0 = 1.08$
 - significantly non-potential
 - energies of P and N solutions differ by < 0.03%
 - self-consistency is achieved
- \triangleright B_x and B_y are modified by self-consistency procedure
 - the changes exceed the nominal uncertainties
 - but are similar to those imposed by preprocessing
 - this implies the initial data are quite inconsistent
- \blacktriangleright BCs on α are preserved at locations with small σ
 - attention is paid to the most believable inference

Self-consistent solutions: (a) *P* solution; (b) *N* solution (Wheatland & Leka 2011)

Initial BCs on J_z (left column) and self-consistent values (right column) (Wheatland & Leka 2011)

Grad-Rubin iteration does not converge strictly initially

- but oscillates in energy (another symptom of inconsistency)
- which introduces some arbitrariness in the modelling
 - a dependence on the number N_{GR} of GR iterations

• Modelling repeated with $N_{GR} = 20$ and $N_{GR} = 40$

- results very similar which suggests the process is robust
- energies of two new solutions are $E/E_0 = 1.08$ to 1 s.f.
- minor differences in final BCs and field structure
- Energy of solution is higher when uncertainties are included
 - large J_z values in strong field regions have small σ
 - these values are preserved giving higher E
- Energy $E/E_0 = 1.08$ is between initial N and P energies
 - in the range of energies found in other studies (de Rosa et al. 2009; Canou & Amari 2010)
 - higher GR-method energies in other studies are the N solution
 - ► the *P* solution is ignored (e.g. Canou & Amari 2010)

Signal to noise ratio in α_0 and the BCs on J_z for the solutions with $N_{GR} = 20, 30, 40$ (Wheatland & Leka 2011)

Summary

- Vector magnetograms give BCs for coronal field modelling
 - the field values are inferences not measurements
 - the modelling is difficult
- The nonlinear force-free model is popular
 - but vector magnetogram data are inconsistent with the model
 - nonlinear force-modelling gives unreliable results
 - the self-consistency procedure provides one solution
- Self-consistency modelling for AR 10953
 - relative uncertainties in boundary data accounted for
 - significantly non-potential force-free model field obtained
 - results robust against different choices in the method
- Self-consistency is a promising method
 - however more physical modelling should be pursued