Computational modelling of stellar magnetic fields from observational boundary values

M. S. Wheatland

School of Physics Sydney Institute for Astronomy The University of Sydney

> Cosmic Magnetism Kiama 8 June 2010

Model for solar AR 10953 from Hinode/SOT data

Overview

Background

Zeeman effect on spectral lines

The Sun

Modelling active regions The data – vector magnetograms Nonlinear force-free modelling The inconsistency problem Self-consistent nonlinear force-free modelling

Other cool stars

Zeeman Doppler Imaging (ZDI) Modelling

Summary

Nobody can measure physical quantities of the solar atmosphere

- Del Toro Iniesta & Ruiz Cobo (1996), Sol. Phys. 164, 169

Background: Zeeman effect on spectral lines

Classical model: dipole-oscillator atom (Sakurai 1989; Jefferies et al. 1989)

▶ absorbs light near e⁻ oscillation frequency v₀

▶ Introduce field **B**: motion of *e*[−] parallel to field unaffected

- in plane perpendicular to B the e⁻ precesses
- frequency of precession is Larmor frequency $\Delta \nu_B = eB/4\pi m_e$
- motion described in terms of frequencies $\nu_0 \pm \Delta \nu_B$
- ▶ superposed CCW and CW motions at $\nu_0 + \Delta \nu_B$ and $\nu_0 \Delta \nu_B$

Wavelength shift (Landé factor g_L is quantum correction)

$$\Delta \lambda_B = \nu_B \lambda_0^2 / c = 11.7 g_L \frac{B[G]}{1000 \text{ G}} \left(\frac{\lambda_0[\text{\AA}]}{5000 \text{ \AA}}\right)^2 \text{ [mÅ]} \qquad (1)$$

small effect except for large fields

Viewed along B: observe circular motions

- Ine replaced by two shifted circularly-polarized lines
- σ -components

Larmor precession $V \longleftrightarrow electron$ $B \odot$ Δ λ

Classical explanation of longitudinal Zeeman effect (Sakurai 1989)

- ▶ Viewed transverse to **B**: observed two linear motions of e⁻
 - central unshifted linearly-polarized π component
 - two shifted linearly-polarized σ -components

Classical explanation of transverse Zeeman effect (Sakurai 1989)

▶ For oblique **B** interpretation requires radiative transport ¹

- for stellar case specification of an atmospheric model
- result is not a measurement of B but an inference
 - "Nobody can measure..."

Unno & Rachovsky analytic solution (Unno 1956; Rachkovsky 1962; 1967)

- \blacktriangleright radiative transfer with uniform ${\bf B}$ and simple atmosphere
- often the basis for interpreting spectro-polarimetric data
- simpler weak-field approximation also used (e.g. Ronan et al. 1987)

¹For more details see e.g. Landi degl'Innocenti & Landolfi (2004).

The Sun: Modelling active regions

- Sunspot magnetic fields power solar activity:
 - solar flares magnetic explosions in the atmosphere (corona)
 - Coronal Mass Ejections (CMEs) expulsions of material
- Space weather: CMEs influence local conditions
 - storms of energetic particles (Solar Proton Events)

A flare and a sunspot: 12 Dec 2006 (Hinode/SOT)

Large active regions flare repeatedly

e.g. ARs 10484 and 10486 in Oct-Nov 2003²

Problem: model the coronal magnetic fields of these regions

ARs 10484 and 10486 produced a sequence of huge flares in October-November 2003 [MDI]

²A good read: Stuart Clark 2007, "The Sun Kings," Princeton University Press

The Sun: The data – vector magnetograms

- ► Stokes profiles $I(\lambda)$, $Q(\lambda)$, $U(\lambda)$, $V(\lambda)$ measured
- Stokes inversion: vector magnetic field inferred³
 - nonlinear least-squares fitting to Unno-Rachovsky solution (Auer et al. 1977; Skumanich et al. 1987; Skumanich & Lites 1987; Lites & Skumanich 1990)
 - line-of-sight and transverse field are parameters of fit
 - transverse field subject to a 180° ambiguity
- ► 180° ambiguity must be resolved (Metcalf 1994; Metcalf et al. 2006)
- Vector magnetogram: photospheric map of $\mathbf{B} = (B_x, B_y, B_z)$
- Vertical current density J_z may be calculated at photosphere:

$$J_{z} = \frac{1}{\mu_{0}} \left(\frac{\partial B_{y}}{\partial x} - \frac{\partial B_{x}}{\partial y} \right) \quad \text{at} \quad z = 0$$
 (2)

locally planar approximation to photosphere

³For more details see e.g. Landi degl'Innocenti & Landolfi (2004).

- New generation of instruments
 - Hinode Solar Optical Telescope (SOT) Spectro-Polarimeter (Tsuneta et al. 2008)
 - Solar Dynamics Observatory Helioseismic & Magnetic Imager (Borrero et al. 2007)

Hinode-derived vector magnetogram for active region 10953

The Sun: Nonlinear force-free modelling

- Vector magnetograms provide boundary conditions for models
 - coronal magnetic field reconstruction
- ► Force-free model for coronal magnetic field:

$$\mathbf{J} \times \mathbf{B} = 0 \quad \text{and} \quad \nabla \cdot \mathbf{B} = 0 \tag{3}$$

- $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$ is electric current density
- physics: Lorentz force dominates over other forces
- coupled nonlinear PDEs
- Writing $\mathbf{J} = \alpha \mathbf{B} / \mu_0$ (**J** is parallel to **B**):

$$\mathbf{B} \cdot \nabla \alpha = 0 \quad \text{and} \quad \nabla \times \mathbf{B} = \alpha \mathbf{B} \tag{4}$$

- α is the force-free parameter
- $\alpha = \mu_0 J_z/B_z$ at z = 0 defines values over vector magnetogram

- Boundary conditions (Grad & Rubin 1958):
 - ► *B_n* in boundary
 - α in boundary over region where $B_n > 0$ or where $B_n < 0$
 - over one polarity
 - we label the polarities P and N respectively
- Vector magnetograms give two sets of boundary conditions
 - ▶ values of $\alpha = \mu_0 J_z / B_z$ over both *P* and *N* are available
- ► Eqs. (4): methods of solution are iterative (e.g. Wiegelmann 2008)
- Current-field iteration (Grad & Rubin 1958)
 - at iteration k solve the linear system

$$\mathbf{B}^{[k-1]} \cdot \nabla \alpha^{[k]} = 0 \quad \text{and} \quad \nabla \times \mathbf{B}^{[k]} = \alpha^{[k]} \mathbf{B}^{[k-1]} \tag{5}$$

- BCs imposed on $\alpha^{[k]}$ and $B_z^{[k]}$
- Wheatland (2007): a fast implementation

The Sun: The inconsistency problem

Force-free methods work for test cases but fail for solar data

(Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008; DeRosa et al. 2009)

- different methods give different solutions
- P and N solutions do not agree for the same method
- Vector magnetogram data inconsistent with force-free model
 - errors in field determination
 - field at photospheric level is not force free (Metcalf et al. 1995)
 - necessary conditions for a force-free field not met (Molodenskii 1969)

- AR 10953 on 30 April 2007
 - P (blue) and N (red) solutions from vector magnetogram

Force-free solutions from K. D. Leka's vector magnetogram data for AR 10953

The Sun: Self-consistent nonlinear force-free modelling

► Find the *closest* force-free solution to the observed data

- Self-consistency procedure (Wheatland & Régnier 2009)
 - ▶ *P* and *N* solutions constructed (current-field iteration)
 - \blacktriangleright Bayesian probability plus solutions used to modify BCs on α
 - taking into account relative uncertainties in boundary values
 - procedure iterated until the P and N solutions agree
- Wheatland & Régnier (2009): demonstrated on AR 10953
 - method shown to work
 - but uncertainties were not available for the boundary data
 - self-consistent solution was close to potential (current-free)
 - result was considered a proof of concept
- Problem re-visited with data including uncertainties
 - solution with large currents obtained (Wheatland & Leka in preparation)

- AR 10953 on 30 April 2007
 - New self-consistent solution(s): P (blue) and N (red)

Self-consistent nonlinear force-free solutions for AR 10953

Soft X-ray image of AR 10953 on 30 April 2007

Hinode/XRT broadband soft X-ray image (Hinode/XRT)

Other cool stars: Zeeman Doppler Imaging (ZDI)

- Permits determination of surface field over cool stars
- Proposed by Semel (1989)⁴
 - applicable to rapidly rotating stars
 - assumes field evolves on a time scale longer than a period
- Basic technique:
 - combine Stokes $V(\lambda, t)$ profiles for many lines to improve SNR
 - fit composite profiles to profiles for a surface field model
 - Unno-Rachovsky solution or weak-field approximation used

Donati et al. (2006) model:

$$\mathbf{B} = [B_r(\theta, \phi), B_\theta(\theta, \phi), B_\phi(\theta, \phi)]$$
(6)

- components expanded in spherical harmonics
- fitting determines coefficients in the expansion

⁴Further developmeants e.g. Brown et al. (1991); Donati & Brown (1997); Donati (2001).

Evidence for stellar global polarity switches (Donati et al. 2008)

- planet-hosting F8 star τ Boo
- successive polarity switches of field components over two years

Surface distribution of B_r inferred by ZDI for τ Boo (Donati & Landstreet 2009)

Other cool stars: Modelling

Source surface modelling (e.g. Jardine et al. 1999; Jardine et al. 2002)

- a potential (current-free) model for global field
- developed for the Sun (Altschuler & Newkirk 1969; Schatten et al. 1969)
- mimics radial stretching of field at height due to stellar wind

Source surface model field (which satisfies $\nabla \times \mathbf{B} = 0$):

$$\mathbf{B}(\mathbf{r},\theta,\phi) = -\nabla \Psi = (B_r, B_\theta, B_\phi)$$
(7)

boundary conditions:

$$B_r(R_*, \theta, \phi) = B_r^{\mathsf{ZDI}}(\theta, \phi) \tag{8}$$

$$B_{\phi}(R_s,\theta,\phi) = B_{\theta}(R_s,\theta,\phi) = 0$$
(9)

- field is purely radial at source surface $R_s \approx 3R_* 5R_*$
- field components may be expanded in spherical harmonics
 - coefficients determined by imposing boundary conditions
- > ZDI values of B_{ϕ} , B_{θ} inconsistent with potential model
 - non-potential models also tried (e.g. Hussain et al. 2002)

Summary

- Stellar magnetic fields are inferred not measured
 - inferred surface values permit coronal field modelling
- The Sun
 - active region modelling motivated by activity/space weather
 - photospheric vector magnetogram data is available
 - nonlinear force-free modelling has been developed
 - boundary data is inconsistent with the model
 - self-consistency solution presented
- Other cool stars
 - inference of surface fields using Zeeman Doppler Imaging
 - coronal field modelling e.g. source surface solutions
- List of solar sites including pictures and movies: http://sydney.edu.au/science/physics/~wheat/⁵

⁵Easier: search for Mike Wheatland on google.