
Nonlinear force-free
fields and coronal

magnetic field
modeling

M. S. Wheatland

Sydney Institute for Astronomy
School of Physics

The University of Sydney

NCAR/HAO Colloquium
19 October 2016, NCAR Center Green

Boulder CO

1/23



Overview

Background
Motivation for coronal magnetic field modeling
The popularity of the nonlinear force-free field (NLFFF) model

NLFFF modeling
Vector magnetogram data
The model and the boundary conditions
The cfit code
Results for analytic bipole BCs
Whence the maximum energy?
Which is the minimum energy?

Summary

2/23



Background: Motivation for coronal magnetic field modeling

I Sunspot magnetic fields power large-scale solar activity
I solar flares, coronal mass ejections

I Solar activity motivates coronal magnetic field modeling
I to understand and quantify magnetic energy release
I to improve flare and space weather prediction

I The Nonlinear Force-Free Field (NLFFF) model is popular
I a static model involving only the magnetic field B
I the ‘simplest plausible model which includes free energy’
I justifications: low plasma β, slow driving, large coronal vA

(cf. Peter et al. 2015)

I the model presents a boundary value problem for B and α
I where α is the force-free parameter

I solar data (vector magnetograms) provide BCs
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Background: The popularity of the NLFFF model

Top row L to R: Chintzoglou et al. (2015); Moraitis et al. (2014); Yang et al. (2015). Middle row: Tadesse et al.

(2015); Inoue et al. (2014); Cheung et al. (2015). Bottom row: Chitta et al. (2014); Mandrini et al. (2014); Cheng

et al. (2014); Wang et al. (2014).
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AR12158 on 10 September 2014 (Zhao et al. 2016; calculation: S.A. Gilchrist)
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NLFFF modeling: Vector magnetogram data

Nobody can measure physical quantities of the solar atmosphere
(del Toro Iniesta & Ruiz Cobo 1996)

I Photospheric lines reveal B via the Zeeman effect
(del Toro Iniesta 2003)

I Stokes inversion: the process of inferring values for B
I from the measured polarisation state of the line

I an inference rather than a direct measurement
I the 180 degree ambiguity in B⊥ must also be resolved

(Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009)

I Vector magnetogram: photospheric map of B = (Bx ,By ,Bz)
I local heliocentric co-ordinates (z is local radial direction)

I Space-based instruments: Hinode/SOT-SP, SDO/HMI
(Tsuneta et al. 2008; Schou et al. 2012)

I the data provide BCs for NLFFF modeling
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NLFFF modeling: The model

I Force-free model for a magnetic field B:
(Wiegelmann & Sakurai 2012)

J × B = 0 and divB = 0 (1)

I where J = µ−1
0 ∇× B is the current density

I We have J parallel to B so writing J = αB/µ0:

∇× B = αB (2)

I where α is the force-free parameter

I Taking the divergence of Eq. (2) gives

B · ∇α = 0 (3)

I using divB = 0

I Eqs. (2) and (3) are equivalent to Eqs. (1)
I four coupled nonlinear PDEs for dependent variables (B, α)
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NLFFF modeling: The boundary conditions

I Boundary conditions in a half space: (Grad & Rubin 1958)

I Bz at z = 0
I α at z = 0 over one polarity of Bz

I because B · ∇α = 0⇒ α is constant along B

I the choices of polarity are labelled P (Bz > 0) and N (Bz < 0)

I Vector magnetograms provide BCs over both polarities using

α|z=0 =
1

Bz

(
∂By

∂x
−
∂Bx

∂y

)∣∣∣∣
z=0

(4)

I so in principle two solutions: the “P and N solutions”

NP

 solutionP N  solution

NP
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NLFFF modeling: The cfit code

I cfit: cartesian current-field iteration (Grad-Rubin) code
(Wheatland 2007)

I Grad-Rubin iteration involves two steps at each iteration k:
(Grad & Rubin 1958)

Current update: B
[k−1] · ∇α[k] = 0 (5)

Field update: ∇× B [k] = α[k]
B

[k−1] (6)

I a fixed point provides a solution to the NLFFF equations

I the solution volume V is 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , 0 ≤ z ≤ Lz
I the BCs are the specification at each iteration of

B [k]
z

∣∣∣
z=0

and α[k](x , y , 0)
∣∣∣
P

or α[k](x , y , 0)
∣∣∣
N

(7)

I as well as B
[k]
z

∣∣∣
z=Lz

= 0

I and periodicity of the fields in x and y

I Eq. (5) is solved using field-line tracing
I Eq. (6) is solved using 2-D FFTs
I the iteration sequence starts with the potential field B [0] = B0
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NLFFF modeling: The cfit code

I The code uses the (Helmholtz) decomposition of the field:

B
[k] = B0 + B

[k]
c (8)

I where B0 = −∇φ0 with boundary conditions:
I ẑ · B0 matches ẑ · B [k] on z = 0 and z = Lz

I B0 is periodic in x and y

I and B
[k]
c = ∇× A[k]

c with boundary conditions:
I ẑ · B [k]

c = 0 on z = 0 and z = Lz

I B
[k]
c is periodic in x and y

I The code solves ∇2φ0 = 0 and ∇2
A

[k]
c = −α[k]

B
[k−1]

I Eq. (8) and the BCs imply

E =
1

2µ0

∫
V
|B [k]|2dV =

1

2µ0

∫
V
|B0 + B

[k]
c |2dV

=
1

2µ0

∫
V
|B0|2 + |B [k]

c |2dV = E0 + E
[k]
c

(9)

I so E0 is the minimum energy field for the specified BCs
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NLFFF modeling: Results for analytic bipole BCs

I BCs for Bz :
I two Gaussian spots

I BCs for α (P BCs):
I a small patch α = α0 = const at the positive pole

BCs for Bz (left) and α (right). The α values are shown in inverse.
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NLFFF modeling: Results for analytic bipole BCs

The end point of the Grad-Rubin iteration procedure with cfit.
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NLFFF modeling: Results for analytic bipole BCs

I BCs for Bz :
I two Gaussian spots

I with a uniform background bipole field

I BCs for α (P BCs):
I a small patch α = α0 = const at the positive pole

BCs for Bz (left) and α (right). The α values are shown in inverse.
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NLFFF modeling: Results for analytic bipole BCs

The end point of the Grad-Rubin iteration procedure with cfit.
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NLFFF modeling: Results for analytic bipole BCs

I NLFFF solutions are obtained for a range of values of α0
I up to a maximum value αmax
I for α0 > αmax a fixed point is not obtained

I The solution energies scale as E (α0)− E0 ≈ const× α2
0

Log-log plot of (E − E0)/E0 versus α0 for bipoles without (left) and with (right) a background field.
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NLFFF modeling: Results for analytic bipole BCs

I The maximum ‘free’ energies are
I E/E0 ≈ 1.05 (no background)
I E/E0 ≈ 1.02 (with background)

I note that E0 is different in the two cases

I The scaling may be understood from the loop self-induction
(e.g. Landau & Lifshitz 1960; Wheatland & Farvis 2003)

I for a toroidal current loop with uniform current:

Eloop = 1
2
Li2 (10)

where L = µ0a

(
ln

8a

r
−

7

4

)
and i = α0

∫
z=0

Bz dx dy (11)

I and where a is the major radius of the torus
I and r is the minor radius

I the solid lines in the figure indicate the Eloop values
I for large α0 (or i) we expect a departure due to L = L(i)

I the current paths change as the loop twists, or distorts
I longer paths imply larger inductance hence greater energy
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NLFFF modeling: Whence the maximum energy?

I J.J. Aly identified an upper bound to the energy (Aly 1984)

I in a half-space, for a specified Bz distribution
I the derivation starts from the Virial theorem: (e.g. Low 1982)

µ0E =

∫
z=0

r · BBz dx dy where r = (x , y)

=

∫
z=0

rBr Bz dσ ≤
(∫

z=0
(rBz )2 dσ

∫
z=0

B2
r dσ

)1/2 (12)

I using the Cauchy-Schwartz inequality with dσ = r dr dφ
I and zero net force on the volume implies: (e.g. Molodenskii 1969)∫

z=0
B2
r dσ =

∫
z=0

(
B2
x + B2

y

)
dσ =

∫
z=0

B2
z dσ (13)

I so the bound in Eq. (12) is independent of Bx and By :

E ≤ EUB = 1
µ0

(I1I2)1/2

where I1 =

∫
z=0

B2
z dx dy and I2 =

∫
z=0

(x2 + y2)B2
z dx dy

(14)
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NLFFF modeling: Whence the maximum energy?

I The integral I2 depends on the choice of origin
I Aly identified this and said (Aly 1984)

To get the best possible bound, we have to take the
infinum... with respect to all possible Os

I but assuming

I2(x0, y0) =

∫
z=0

[
(x − x0)2 + (y − y0)2

]
B2
z dx dy (15)

I it is easy to show that the extremum EEUB is achieved for

x0 =
1

I1

∫
z=0

x B2
z dx dy and y0 =

1

I1

∫
z=0

y B2
z dx dy (16)

I i.e. the B2
z -weighted average position

I For our bipole field Bz distributions (x0, y0) = 1
2 (Lx , Ly ) and:

I EEUB/E0 ≈ 4.3 (no background)
I EEUB/E0 ≈ 5.9 (with background)
I and these are much larger than the NLFFF solution energies
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NLFFF modeling: Whence the maximum energy?

I There is also the Aly-Sturrock limit: (Aly 1991; Sturrock 1991)

I the “open field” energy Eopen is the true upper bound?
I but for our BCs (periodic in x and y)

I excess flux at the lower boundary must exit the top
I hence the open field has all field lines exiting the top
I hence B → const as z →∞ so Eopen =∞

The Aly-Sturrock open field constructed for the bipole with no background.

I So we know that there is a “most energetic field”
I but we don’t know if cfit achieves that limit
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NLFFF modeling: Which is the minimum energy?

I The usual field decomposition for the Thomson theorem is:
(e.g. Jackson 1962; Valori et al. 2013)

B = BP + BJ (17)

I where BP = −∇φP with boundary conditions:
I n̂ · BP matches n̂ · B on all boundaries

I and BJ is the non-potential component with BCs:
I n̂ · BJ = 0 on all boundaries

I Eq. (17) and the BCs imply the Thomson/Dirichlet theorem:

E =
1

2µ0

∫
V
|B|2dV =

1

2µ0

∫
V
|BP + BJ|2dV

=
1

2µ0

∫
V
|BP|2 + |BJ|2dV = EP + EJ

(18)

I so EP is the minimum energy field for the specified BCs

20/23



NLFFF modeling: Which is the minimum energy?

I Question: If this decomposition is applied to cfit results
(e.g. Valori et al. 2013; De Rosa et al. 2015)

I then we have both field decompositions:

B = B0 + Bc

= BP + BJ
(19)

I which is the minimum energy, E0 or EP?
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NLFFF modeling: Which is the minimum energy?

I Question: If this decomposition is applied to cfit results
(e.g. Valori et al. 2013; De Rosa et al. 2015)

I then we have both field decompositions:

B = B0 + Bc

= BP + BJ
(20)

I which is the minimum energy, E0 or EP?

I Answer: It can be shown that E0 ≤ EP!
I there is no contradiction in the existence of two “minimums”
I 1. n̂ · BP matches n̂ · B on all boundaries
I 2. n̂ · B0 only matches n̂ · B on z = 0 and z = Lz

I case 1. is a stronger constraint, for a specified B

I correspondingly the potential field energy in this case is higher
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Summary

I Coronal magnetic fields power flares and CMEs
I The NLFFF model is used to reconstruct the coronal field

I with boundary values from vector magnetograms

I cfit is a Cartesian NLFFF code using the Grad-Rubin method
I which may be used for modeling from solar data
I or to investigate field configurations with analytic BCs

I For analytic bipolar fields with given Bz and different α
I NLFFF solutions are found for a range of values of α
I with energy which scales as α2

I up to an upper limit in α
I but the origin of this limit is unclear

I The basic field decomposition used by cfit
I illustrates an interesting subtlety in Thomson’s theorem
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