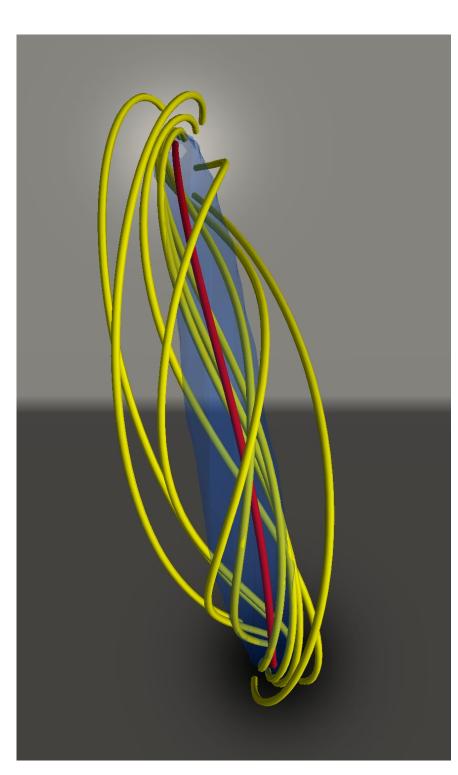
Nonlinear force-free fields and coronal magnetic field modeling

M.S. Wheatland

Sydney Institute for Astronomy School of Physics The University of Sydney

NCAR/HAO Colloquium 19 October 2016, NCAR Center Green Boulder CO



Overview

Background

Motivation for coronal magnetic field modeling The popularity of the nonlinear force-free field (NLFFF) model

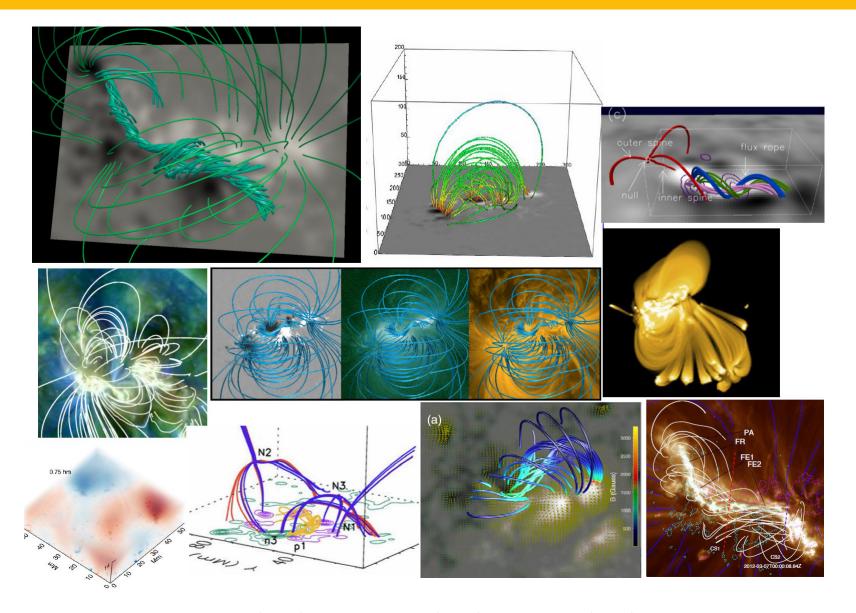
NLFFF modeling

Vector magnetogram data The model and the boundary conditions The cfit code Results for analytic bipole BCs Whence the maximum energy? Which is the minimum energy?

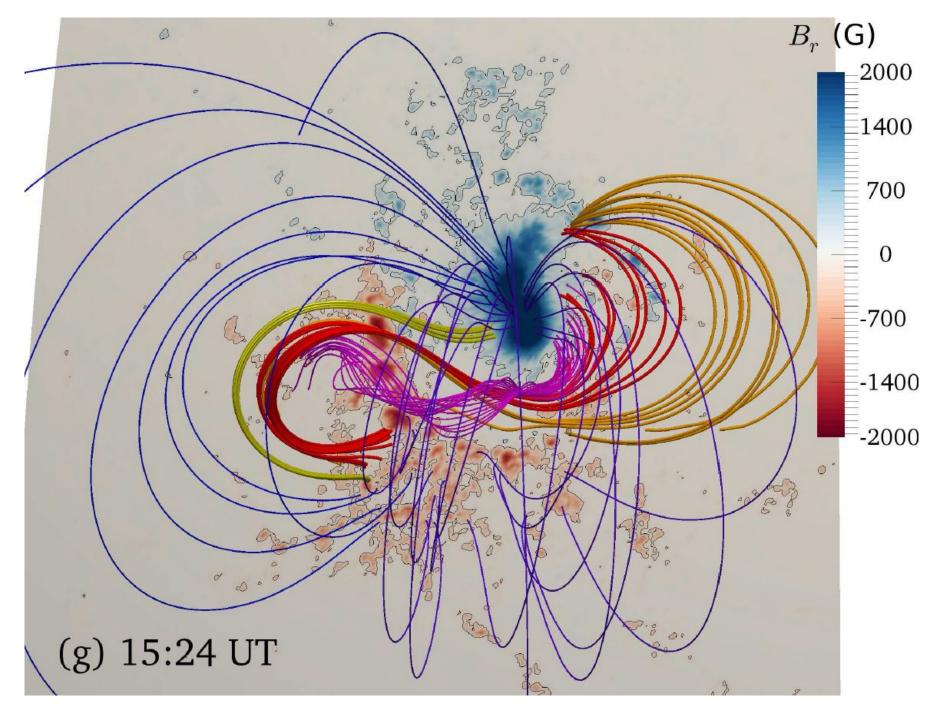
Summary

- Sunspot magnetic fields power large-scale solar activity
 - solar flares, coronal mass ejections
- Solar activity motivates coronal magnetic field modeling
 - to understand and quantify magnetic energy release
 - to improve flare and space weather prediction
- ► The Nonlinear Force-Free Field (NLFFF) model is popular
 - \blacktriangleright a static model involving only the magnetic field B
 - the 'simplest plausible model which includes free energy'
 - justifications: low plasma β, slow driving, large coronal v_A (cf. Peter et al. 2015)
 - \blacktriangleright the model presents a boundary value problem for \pmb{B} and α
 - \blacktriangleright where α is the force-free parameter
 - solar data (vector magnetograms) provide BCs

Background: The popularity of the NLFFF model



Top row L to R: Chintzoglou et al. (2015); Moraitis et al. (2014); Yang et al. (2015). Middle row: Tadesse et al. (2015); Inoue et al. (2014); Cheung et al. (2015). Bottom row: Chitta et al. (2014); Mandrini et al. (2014); Cheng et al. (2014); Wang et al. (2014).



AR12158 on 10 September 2014 (Zhao et al. 2016; calculation: S.A. Gilchrist)

NLFFF modeling: Vector magnetogram data

Nobody can measure physical quantities of the solar atmosphere (del Toro Iniesta & Ruiz Cobo 1996)

- Photospheric lines reveal B via the Zeeman effect (del Toro Iniesta 2003)
 - ► Stokes inversion: the process of inferring values for **B**
 - from the measured polarisation state of the line
 - ► an inference rather than a direct measurement
- ► the 180 degree ambiguity in B_⊥ must also be resolved (Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009)
- Vector magnetogram: photospheric map of $\boldsymbol{B} = (B_x, B_y, B_z)$
 - ► local heliocentric co-ordinates (*z* is local radial direction)
- Space-based instruments: Hinode/SOT-SP, SDO/HMI (Tsuneta et al. 2008; Schou et al. 2012)
 - the data provide BCs for NLFFF modeling

NLFFF modeling: The model

 Force-free model for a magnetic field B: (Wiegelmann & Sakurai 2012)

$$\boldsymbol{J} \times \boldsymbol{B} = 0$$
 and div $\boldsymbol{B} = 0$ (1)

• where $\boldsymbol{J} = \mu_0^{-1} \nabla \times \boldsymbol{B}$ is the current density

• We have **J** parallel to **B** so writing $\mathbf{J} = \alpha \mathbf{B}/\mu_0$:

$$\nabla \times \boldsymbol{B} = \alpha \boldsymbol{B} \tag{2}$$

- where α is the force-free parameter
- ► Taking the divergence of Eq. (2) gives

$$\boldsymbol{B} \cdot \nabla \alpha = \boldsymbol{0} \tag{3}$$

- using div $\boldsymbol{B} = 0$
- ► Eqs. (2) and (3) are equivalent to Eqs. (1)
 - four coupled nonlinear PDEs for dependent variables (\boldsymbol{B} , α)

NLFFF modeling: The boundary conditions

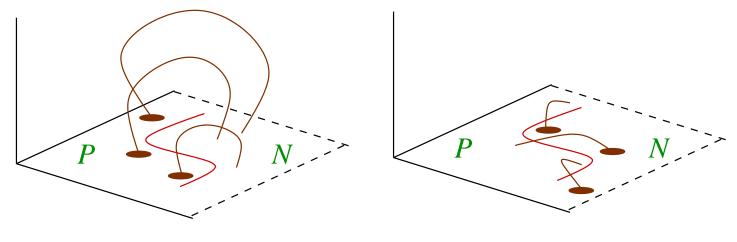
► Boundary conditions in a half space: (Grad & Rubin 1958)

- B_z at z = 0
- α at z = 0 over one polarity of B_z
 - because $\boldsymbol{B} \cdot \nabla \alpha = 0 \Rightarrow \alpha$ is constant along \boldsymbol{B}
 - the choices of polarity are labelled $P(B_z > 0)$ and $N(B_z < 0)$

Vector magnetograms provide BCs over both polarities using

$$\alpha|_{z=0} = \left. \frac{1}{B_z} \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right) \right|_{z=0}$$
(4)

► so in principle two solutions: the "P and N solutions"



P solution

N solution

NLFFF modeling: The cfit code

- cfit: cartesian current-field iteration (Grad-Rubin) code (Wheatland 2007)
 - Grad-Rubin iteration involves two steps at each iteration k: (Grad & Rubin 1958)
 - Current update: $\boldsymbol{B}^{[k-1]} \cdot \nabla \alpha^{[k]} = 0$ (5)Field update: $\nabla \times \boldsymbol{B}^{[k]} = \alpha^{[k]} \boldsymbol{B}^{[k-1]}$ (6)
 - Field update: $\nabla \times \boldsymbol{B}^{[k]} = \alpha^{[k]} \boldsymbol{B}^{[k-1]}$ (6)(6)
 - a fixed point provides a solution to the NLFFF equations
 - ► the solution volume V is $0 \le x \le L_x$, $0 \le y \le L_y$, $0 \le z \le L_z$
 - the BCs are the specification at each iteration of

$$B_z^{[k]}\Big|_{z=0}$$
 and $\alpha^{[k]}(x, y, 0)\Big|_P$ or $\alpha^{[k]}(x, y, 0)\Big|_N$ (7)
• as well as $B_z^{[k]}\Big|_{z=L_z} = 0$

- and periodicity of the fields in x and y
- ► Eq. (5) is solved using field-line tracing
- ► Eq. (6) is solved using 2-D FFTs
- the iteration sequence starts with the potential field $B^{[0]} = B_0$

NLFFF modeling: The cfit code

► The code uses the (Helmholtz) decomposition of the field:

$$B^{[k]} = B_0 + B_c^{[k]}$$
 (8)

• where $B_0 = -\nabla \phi_0$ with boundary conditions:

- $\hat{z} \cdot B_0$ matches $\hat{z} \cdot B^{[k]}$ on z = 0 and $z = L_z$
- B_0 is periodic in x and y
- and $B_{c}^{[k]} = \nabla \times A_{c}^{[k]}$ with boundary conditions:

•
$$\hat{z} \cdot B_{c}^{[k]} = 0$$
 on $z = 0$ and $z = L_{z}$

• $B_{c}^{[k]}$ is periodic in x and y

• The code solves $\nabla^2 \phi_0 = 0$ and $\nabla^2 \mathbf{A}_c^{[k]} = -\alpha^{[k]} \mathbf{B}^{[k-1]}$

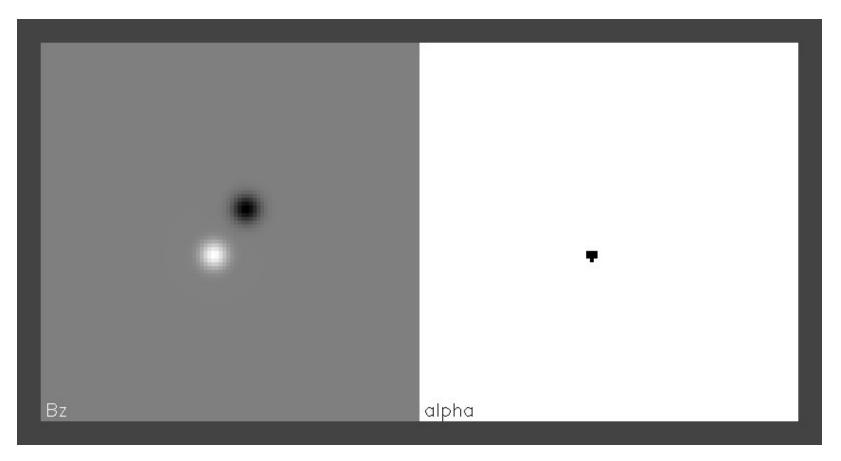
► Eq. (8) and the BCs imply

$$E = \frac{1}{2\mu_0} \int_V |\boldsymbol{B}^{[k]}|^2 dV = \frac{1}{2\mu_0} \int_V |\boldsymbol{B}_0 + \boldsymbol{B}_c^{[k]}|^2 dV$$

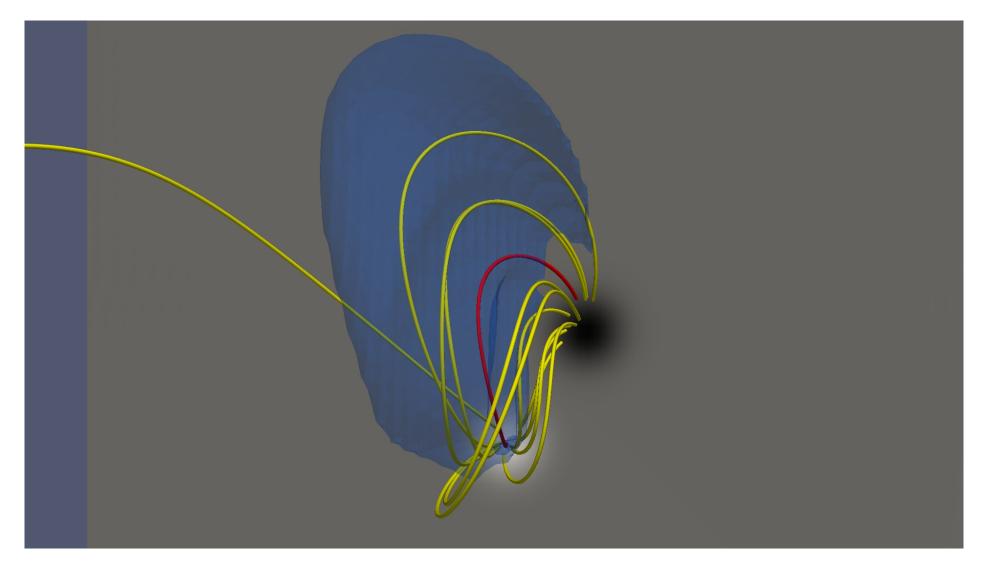
$$= \frac{1}{2\mu_0} \int_V |\boldsymbol{B}_0|^2 + |\boldsymbol{B}_c^{[k]}|^2 dV = E_0 + E_c^{[k]}$$
(9)

• so E_0 is the minimum energy field for the specified BCs

- BCs for B_z :
 - ► two Gaussian spots
- BCs for α (*P* BCs):
 - ▶ a small patch $\alpha = \alpha_0 = \text{const}$ at the positive pole

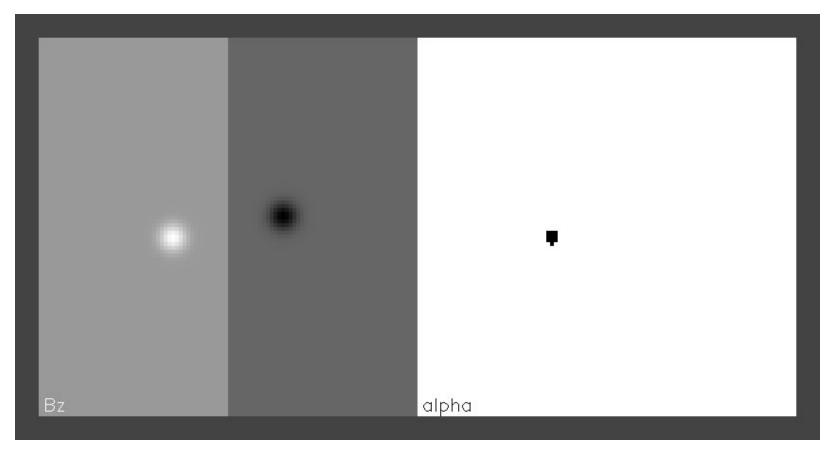


BCs for B_z (left) and α (right). The α values are shown in inverse.

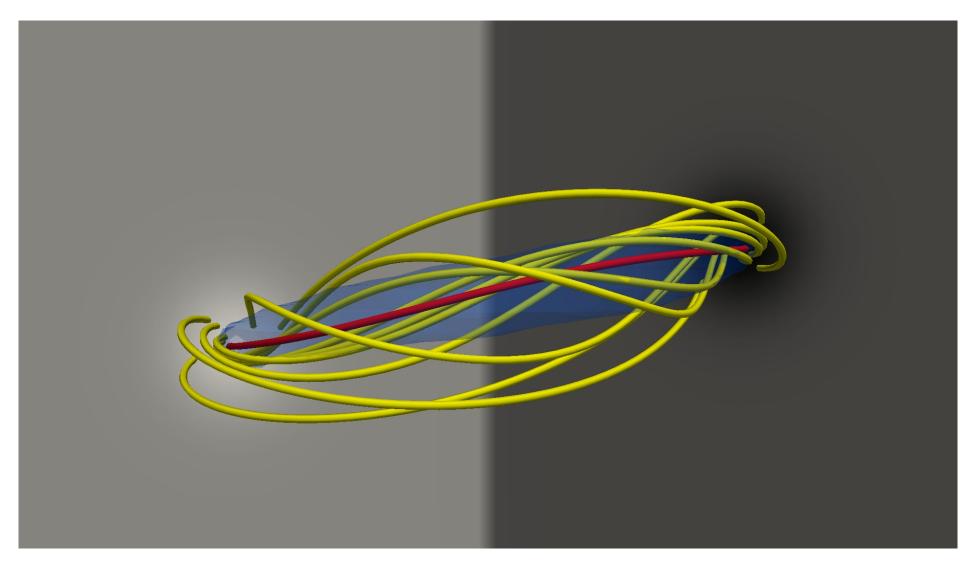


The end point of the Grad-Rubin iteration procedure with cfit.

- BCs for B_z :
 - two Gaussian spots
 - with a uniform background bipole field
- BCs for α (*P* BCs):
 - ▶ a small patch $\alpha = \alpha_0 = \text{const}$ at the positive pole

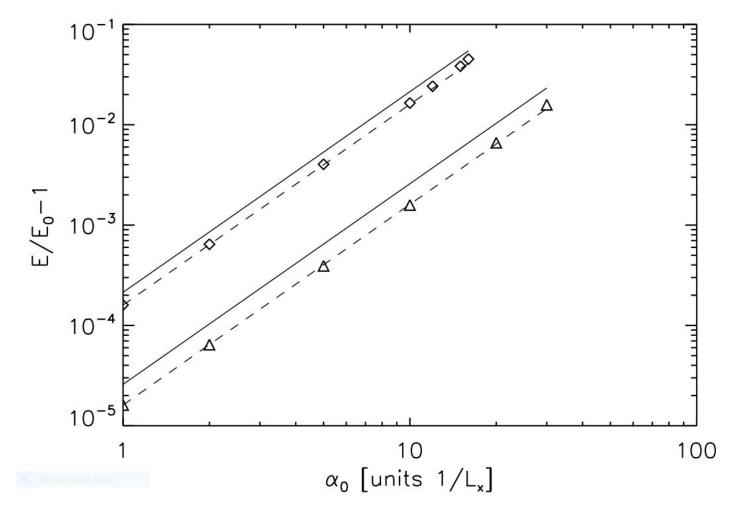


BCs for B_z (left) and α (right). The α values are shown in inverse.



The end point of the Grad-Rubin iteration procedure with cfit.

- NLFFF solutions are obtained for a range of values of α_0
 - up to a maximum value α_{max}
 - for $\alpha_0 > \alpha_{max}$ a fixed point is not obtained
- The solution energies scale as $E(\alpha_0) E_0 \approx \text{const} \times \alpha_0^2$



Log-log plot of $(E - E_0)/E_0$ versus α_0 for bipoles without (left) and with (right) a background field.

- The maximum 'free' energies are
 - $E/E_0 \approx 1.05$ (no background)
 - $E/E_0 \approx 1.02$ (with background)
 - note that E_0 is different in the two cases
- The scaling may be understood from the loop self-induction (e.g. Landau & Lifshitz 1960; Wheatland & Farvis 2003)
 - for a toroidal current loop with uniform current:

$$\overline{\Xi}_{\text{loop}} = \frac{1}{2}Li^2 \tag{10}$$

where
$$L = \mu_0 a \left(\ln \frac{8a}{r} - \frac{7}{4} \right)$$
 and $i = \alpha_0 \int_{z=0} B_z \, dx \, dy$ (11)

- and where a is the major radius of the torus
- and r is the minor radius
- the solid lines in the figure indicate the E_{loop} values
- for large α_0 (or *i*) we expect a departure due to L = L(i)
 - ► the current paths change as the loop twists, or distorts
 - Ionger paths imply larger inductance hence greater energy

NLFFF modeling: Whence the maximum energy?

- ► J.J. Aly identified an upper bound to the energy (Aly 1984)
 - in a half-space, for a specified B_z distribution
 - ► the derivation starts from the Virial theorem: (e.g. Low 1982)

$$\mu_0 E = \int_{z=0}^{\infty} \mathbf{r} \cdot \mathbf{B} B_z \, \mathrm{d}x \, \mathrm{d}y \quad \text{where} \quad \mathbf{r} = (x, y)$$
$$= \int_{z=0}^{\infty} r B_r \, B_z \, \mathrm{d}\sigma \le \left(\int_{z=0}^{\infty} (r B_z)^2 \, \mathrm{d}\sigma \int_{z=0}^{\infty} B_r^2 \, \mathrm{d}\sigma \right)^{1/2}$$
(12)

• using the Cauchy-Schwartz inequality with $d\sigma = r dr d\phi$

► and zero net force on the volume implies: (e.g. Molodenskii 1969)

$$\int_{z=0}^{z=0} B_r^2 \, \mathrm{d}\sigma = \int_{z=0}^{z=0} \left(B_x^2 + B_y^2 \right) \, \mathrm{d}\sigma = \int_{z=0}^{z=0} B_z^2 \, \mathrm{d}\sigma \tag{13}$$

▶ so the bound in Eq. (12) is independent of B_x and B_y :

$$E \leq E_{\text{UB}} = \frac{1}{\mu_0} (I_1 I_2)^{1/2}$$

where $I_1 = \int_{z=0} B_z^2 \, \mathrm{d}x \, \mathrm{d}y$ and $I_2 = \int_{z=0} (x^2 + y^2) B_z^2 \, \mathrm{d}x \, \mathrm{d}y$ (14)

• The integral I_2 depends on the choice of origin

► Aly identified this and said (Aly 1984)

To get the best possible bound, we have to take the infinum... with respect to all possible Os

but assuming

$$I_2(x_0, y_0) = \int_{z=0} \left[(x - x_0)^2 + (y - y_0)^2 \right] B_z^2 \, \mathrm{d}x \, \mathrm{d}y \tag{15}$$

• it is easy to show that the extremum E_{EUB} is achieved for

$$x_0 = \frac{1}{I_1} \int_{z=0}^{z} x B_z^2 \, dx \, dy$$
 and $y_0 = \frac{1}{I_1} \int_{z=0}^{z} y \, B_z^2 \, dx \, dy$ (16)

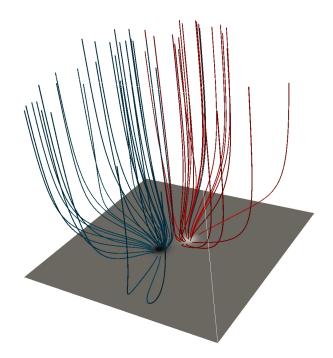
• i.e. the B_z^2 -weighted average position

• For our bipole field B_z distributions $(x_0, y_0) = \frac{1}{2}(L_x, L_y)$ and:

- $E_{\rm EUB}/E_0 \approx 4.3$ (no background)
- $E_{\rm EUB}/E_0 \approx 5.9$ (with background)
- and these are much larger than the NLFFF solution energies

NLFFF modeling: Whence the maximum energy?

- ► There is also the Aly-Sturrock limit: (Aly 1991; Sturrock 1991)
 - the "open field" energy E_{open} is the true upper bound?
 - but for our BCs (periodic in x and y)
 - excess flux at the lower boundary must exit the top
 - hence the open field has all field lines exiting the top
 - hence $B \to \text{const}$ as $z \to \infty$ so $E_{\text{open}} = \infty$



The Aly-Sturrock open field constructed for the bipole with no background.

- ► So we know that there is a "most energetic field"
 - but we don't know if cfit achieves that limit

NLFFF modeling: Which is the minimum energy?

The usual field decomposition for the Thomson theorem is: (e.g. Jackson 1962; Valori et al. 2013)

$$\boldsymbol{B} = \boldsymbol{B}_{\mathsf{P}} + \boldsymbol{B}_{\mathsf{J}} \tag{17}$$

• where $\mathbf{B}_{\mathbf{P}} = -\nabla \phi_{\mathbf{P}}$ with boundary conditions:

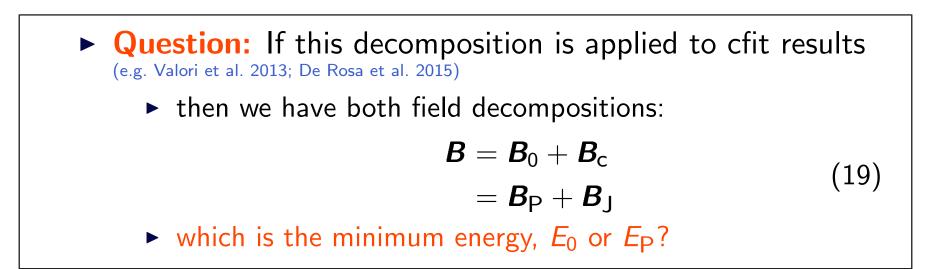
- $\hat{\mathbf{n}} \cdot \mathbf{B}_{P}$ matches $\hat{\mathbf{n}} \cdot \mathbf{B}$ on all boundaries
- and $B_{\rm J}$ is the non-potential component with BCs:
 - $\hat{\mathbf{n}} \cdot \mathbf{B}_{J} = 0$ on all boundaries

► Eq. (17) and the BCs imply the Thomson/Dirichlet theorem:

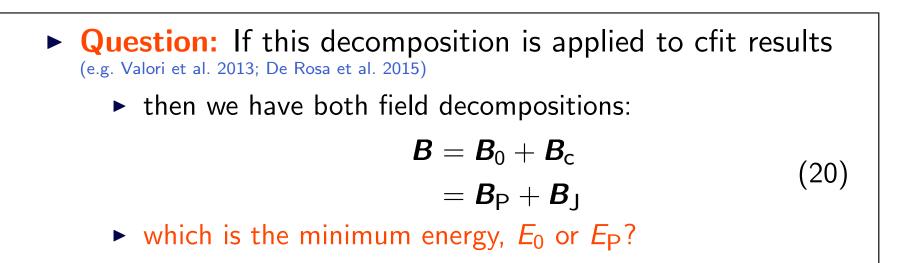
$$E = \frac{1}{2\mu_0} \int_V |\mathbf{B}|^2 dV = \frac{1}{2\mu_0} \int_V |\mathbf{B}_{\mathsf{P}} + \mathbf{B}_{\mathsf{J}}|^2 dV$$

= $\frac{1}{2\mu_0} \int_V |\mathbf{B}_{\mathsf{P}}|^2 + |\mathbf{B}_{\mathsf{J}}|^2 dV = E_{\mathsf{P}} + E_{\mathsf{J}}$ (18)

• so E_P is the minimum energy field for the specified BCs



NLFFF modeling: Which is the minimum energy?



- Answer: It can be shown that $E_0 \leq E_P$!
 - there is no contradiction in the existence of two "minimums"
 - ▶ 1. $\hat{\mathbf{n}} \cdot \mathbf{B}_{P}$ matches $\hat{\mathbf{n}} \cdot \mathbf{B}$ on all boundaries
 - ▶ 2. $\hat{\mathbf{n}} \cdot \mathbf{B}_0$ only matches $\hat{\mathbf{n}} \cdot \mathbf{B}$ on z = 0 and $z = L_z$
 - \blacktriangleright case 1. is a stronger constraint, for a specified \pmb{B}
 - correspondingly the potential field energy in this case is higher

Summary

- Coronal magnetic fields power flares and CMEs
 - The NLFFF model is used to reconstruct the coronal field
 - with boundary values from vector magnetograms
- cfit is a Cartesian NLFFF code using the Grad-Rubin method
 - which may be used for modeling from solar data
 - or to investigate field configurations with analytic BCs
- For analytic bipolar fields with given B_z and different α
 - NLFFF solutions are found for a range of values of α
 - with energy which scales as α^2
 - up to an upper limit in α
 - but the origin of this limit is unclear
- The basic field decomposition used by cfit
 - illustrates an interesting subtlety in Thomson's theorem