Nonlinear force-free magnetic fields

M.S. Wheatland

School of Physics, University of Sydney

University of Waikato 24 May 2007

Overview

- Coronal magnetic fields
- Spectro-polarimetric data
- Nonlinear force-free magnetic fields
- Problem of speed of methods
- Current-field iteration
- Fast current-field iteration
- Examples
- NLFFF workshop 2006
- NLFFF workshop 2007
- Summary

Solar coronal magnetic fields

- Magnetic fields around sunspots power flares, CMEs
- Space weather effects of large flares motivate flare prediction

Spectro-polarimetric data

Vector magnetic fields in the low atmosphere may be inferred

- Problems:
 - instrumental uncertainties
 - validity/reliability of the inversion
 - 180 degree ambiguity in transverse field
- New generation of high resolution instruments
 - ▶ SOLIS/VSM (now): detector size $N \approx 2k$, 1", full disk
 - Hinode (now): N = 1k-2k, 0.16", small FOV
 - ► SDO/HMI (2008): N = 4k, 1", full disk
- Measurements may be used to:
 - investigate topology
 - determine free energy

Data: T.R. Metcalf

Nonlinear force-free magnetic fields

Force-free magnetic field B

$$(
abla imes \mathbf{B}) imes \mathbf{B} = 0, \qquad
abla \cdot \mathbf{B} = 0$$
 (1)

model for static fields in solar corona

• current density $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$ parallel to \mathbf{B}

Alternative form:

$$\nabla \times \mathbf{B} = \alpha \mathbf{B} \tag{2}$$

$$\mathbf{B} \cdot \nabla \alpha = \mathbf{0} \tag{3}$$

- $\alpha = 0$, $\alpha = \text{const:}$ potential, linear force-free fields
- $\alpha = \alpha(\mathbf{r})$: nonlinear force-free fields
- nonlinear case appropriate for solar modelling

- Can we solve the force-free equations using BCs from spectro-polarimetric instruments?
 - reconstruct coronal field from lower boundary values
- Photospheric field is not force-free
 - $\blacktriangleright\,$ field force-free at a height $\approx 500\,{\rm km}$ (Metcalf et al., 1995)
- Variety of methods of solution of nonlinear force-free equations investigated
 - current-field iteration (Grad & Rubin 1958)
 - magneto-frictional (Chodura & Schlüter 1981)
 - optimization (Wheatland, Sturrock & Roumeliotis, 2000)
- NLFFF workshops
 - 2005: Low & Lou 1990 test cases (Schrijver et al., 2006)
 - 2006: solar-like test case
 - 2007: Hinode data

Force-free methods are slow

• Order: time as a function of N for N^3 points

Order
$O(N^5)$
$O(N^5)$
$O(N^6)$

(Schrijver et al., 2006)

- New instruments are high resolution, $N \approx 1$ k–2k
 - calculations for this size unfeasible?
- Recent O(N⁴) methods
 - optimization (Inhester & Weigelmann 2006)
 - current-field iteration (Wheatland 2006)

Current-field iteration

General approach (Grad & Rubin 1958):

$$\nabla \times \mathbf{B}^{k+1} = \alpha^k \mathbf{B}^k \tag{4}$$

$$\mathbf{B}^{k+1} \cdot \nabla \alpha^{k+1} = 0 \tag{5}$$

with

$$\left. \hat{\mathbf{z}} \cdot \mathbf{B}^{k+1} \right|_{z=0} = \left. \hat{\mathbf{z}} \cdot \mathbf{B}^{\mathrm{obs}} \right|_{z=0},$$
 (6)

$$\alpha^{k+1}\Big|_{z=0,B_z>0} = \left.\alpha^{\text{obs}}\right|_{z=0,B_z>0} \tag{7}$$

and $\mathbf{B}^k = \mathbf{B}_0$, a potential field

 Various implementations (e.g. Sakurai 1981; Amari et al., 1999; Wheatland 2004, 2006; Inhester & Wiegelmann 2006)

• specific implementations $O(N^4) - O(N^6)$

Fast current-field iteration

1. Field updating

Separate into potential, non-potential parts:

$$\mathbf{B}^{k+1} = \mathbf{B}_0 + \mathbf{B}_c^{k+1} \tag{8}$$

where

$$abla imes \mathbf{B}_0 = \mathbf{0} \quad \text{and} \quad \left. \mathbf{\hat{z}} \cdot \mathbf{B}_0 \right|_{z=0} = \left. \mathbf{\hat{z}} \cdot \mathbf{B}^{\text{obs}} \right|_{z=0}$$
(9)

so

$$\left. \hat{\mathbf{z}} \cdot \mathbf{B}_{\mathrm{c}}^{k+1} \right|_{z=0} = 0 \tag{10}$$

▶ **B**^{*k*+1}_{*c*} may be constructed by solving

$$\nabla \times \mathbf{B}_{c}^{k+1} = \mu_{0} \mathbf{J}_{c}^{k} \tag{11}$$

with $\mathbf{J}_{\mathrm{c}}^{k} = \alpha^{k} \mathbf{B}^{k}$, subject to (10)

► Writing
$$\mathbf{B}_{c}^{k+1} = \nabla \times \mathbf{A}_{c}^{k+1}$$
 with $\nabla \cdot \mathbf{A}_{c}^{k+1} = 0$, solve
 $\nabla^{2} \mathbf{A}_{c}^{k+1} = -\mu_{0} \mathbf{J}_{c}^{k}$ (12)

subject to

$$A_{cx}^{k+1}\Big|_{z=0} = A_{cy}^{k+1}\Big|_{z=0} = 0, \quad \frac{\partial A_{cz}^{k+1}}{\partial z}\Big|_{z=0} = 0$$
 (13)

and
$$\mathbf{A}^{k+1}_{\mathrm{c}}
ightarrow \mathbf{0}$$
 as $z
ightarrow \infty$

▶ Fourier transform in *x* and *y* to give

$$\frac{d^{2}\widetilde{\mathbf{A}}_{c}^{k+1}}{dz^{2}} - \kappa^{2}\widetilde{\mathbf{A}}_{c}^{k+1} = -\mu_{0}\widetilde{\mathbf{J}}_{c}^{k}$$
(14)

with $\kappa^2 = 4\pi^2(u^2 + v^2)$, u and v are wave numbers • solve analytically with BCs to give $\widetilde{\mathbf{A}}_c^{k+1}(u, v, z)$

- ▶ Using FT of $\mathbf{B}_{c}^{k+1} = \nabla \times \mathbf{A}_{c}^{k+1}$, obtain analytic expressions for $\widetilde{\mathbf{B}}_{c}^{k+1}$ in terms of $\widetilde{\mathbf{J}}_{c}^{k}$
- Procedure: FFT of $\alpha^k \mathbf{B}_c^k$ gives $\widetilde{\mathbf{J}}_c^k$
 - apply analytic solutions above to construct $\widetilde{\mathbf{B}}_{c}^{k+1}$
 - inverse FFT gives \mathbf{B}_{c}^{k+1}
- Solutions periodic in x and y: can pad with zeros
- $O(N^4)$ operations

2. Current updating

• $\mathbf{B}^{k+1} \cdot \nabla \alpha^{k+1} = 0$ solved by field line tracing

- ▶ for each point **r**, trace field line in both directions
- if field line leaves box via sides or top, $\alpha^{k+1}(\mathbf{r}) = 0$
- if field line connects to z = 0 at both ends, a^{k+1}(r) = a₊ (value at positive footpoint)
- can also set $\alpha^{k+1}(\mathbf{r}) = \alpha_{-}$, or $\alpha^{k+1}(\mathbf{r}) = \frac{1}{2}(\alpha_{+} + \alpha_{-})$
- $O(N^4)$ operations

Examples

NLFFF workshop 2006

- Solar-like test case constructed by Aad van Ballegoojin
 - Aad started with MDI data, 'inserted' a flux rope, performed magnetofrictional relaxation
- Boundary data B_x, B_y, B_z given to workshop participants
- 'Photospheric' (forced) and 'chromospheric' (less forced) BCs provided; also preprocessed BCs
 - α obtained via $\alpha = B_z^{-1} \left(\partial B_y / \partial x \partial B_x / \partial y \right)$
- Current-field iteration: approximate reconstruction achieved
 - $\blacktriangleright~$ 10 iterations on a 320 \times 320 \times 256 grid
 - results not fixed points of iteration
 - $\blacktriangleright\,$ current-weighted average angle between J and $B\approx 10\,\mathrm{deg}$
- $E/E_{\text{pot}} < 1$ for magnetofrictional, optimization methods!
- Paper submitted (Metcalf et al. 2007)

Model	C_{vec}	C_{CS}	$1-E_n$	$1-E_m$	CWsin	E/Epot	1-FLD (area/flux)
		(Chromosp	pheric Bou	undary		
Reference Model	1.00	1.00	1.00	1.00	0.10	1.34	1.00/1.00
Wiegelmann	1.00	0.99	0.89	0.73	0.11	1.34	0.85/0.76
Wheatland	0.95	0.98	0.79	0.70	0.15	1.21	0.51/0.63
Valori	0.98	0.98	0.84	0.71	0.16	1.26	0.56/0.58
McTiernan	0.97	0.97	0.80	0.69	0.22	1.15	0.76/0.70
Potential Solution	0.85	0.96	0.69	0.67	(undef.)	1.00	0.47/0.57
			Photospl	neric Bou	ndary		
Reference Model	1.00	1.00	1.00	1.00	0.10	1.52	1.00/1.00
Wiegelmann	0.93	0.96	0.62	0.61	0.38	0.76	0.56/0.41
Wheatland	0.86	0.95	0.66	0.63	0.20	1.01	0.33/0.48
Valori	0.80	0.83	0.36	-0.08	0.46	0.46	0.35/0.29
McTiernan	0.91	0.96	0.63	0.63	0.47	0.75	0.56/0.46
Potential Solution	0.85	0.95	0.66	0.64	(undef.)	1.00	0.41/0.53
		Photos	spheric P	reprocesse	ed Bounda	ry	
Reference Model	1.00	1.00	1.00	1.00	0.10	1.52	1.00/1.00
Wiegelmann							
Smoothed	0.98	0.97	0.77	0.65	0.26	1.18	0.24/0.48
Unsmoothed	0.95	0.96	0.69	0.63	0.30	0.97	0.60/0.51
Wheatland							
Smoothed	0.88	0.96	0.69	0.65	0.11	1.03	0.22/0.47
Unsmoothed	0.82	0.93	0.59	0.56	0.38	1.08	0.13/0.26

NLFFF workshop 2007

- Hinode data
 - ▶ rebinned to 0.63"
 - embedded in MDI data to increase FOV (final size 320 × 320)
- ► BCs obtained via $\alpha = B_z^{-1} \left(\partial B_y / \partial x \partial B_x / \partial y \right)$
- \blacktriangleright Problem of 180-degree ambiguity in azimuthal angle ϕ
 - Metcalf (1994) procedure was used
 - imperfect: spurious currents result
- Current-field iteration tends to be unstable
 - α values 'censored' on basis of B_z and $\Delta \phi \approx 180 \text{ deg}$
 - under-relaxation:

$$\mathbf{B}^{k+1} = (1-f)\mathbf{B}^k + f\left(\mathbf{B}_{\mathrm{c}}^{k+1} + \mathbf{B}_0\right)$$
(15)

with f < 1

Summary

- Nonlinear force-free fields provide a zeroth order model for coronal magnetic fields
 - boundary value problem of 'reconstructing' coronal field from B values in low atmosphere
- Nonlinear force-free fields difficult to calculate, methods slow
 - recently some $O(N^4)$ methods have been developed
- Current-field iteration method described
- NLFFF workshops 2006 and 2007 described