Solar flares, active regions, and associated Australian research

M. S. Wheatland, S. A. Gilchrist & P. L. Noble,<sup>1</sup> P. S. Cally & A. C. Donea,<sup>2</sup> A. A. Norton<sup>3</sup>

> <sup>1</sup>School of Physics Sydney Institute for Astronomy The University of Sydney

<sup>2</sup>Centre for Stellar and Planetary Astrophysics Monash University

> <sup>3</sup>Centre for Astronomy James Cook University

11<sup>th</sup> Australian Space Science Conference ANU 26-29 September 2011





Nonlinear force-free model for active region 11029 (Gilchrist, Wheatland & Leka 2011)

# **Overview**

### Background

Australian research on flares and active regions

### The University of Sydney

*Coronal magnetic field modeling Sunspot number modeling* 

### Monash University

Fast-to-Alfvén wave conversion Magnetic transients from flares

James Cook University The Sun and its magnetic fields

Summary

Background: Australian research on flares and active regions

Sunspot magnetic fields power large-scale solar activity

solar flares, Coronal Mass Ejections (CMEs)

- Various motivations for studying the physics of active regions
  - fundamental understanding, interest
  - space weather effects of large flares and CMEs (US National Research Council workshop report, Baker et al. 2008)
- The solar physics research community in Australia is small (Cally, Wheatland, Melrose, Cairns 2012)
  - driven by research interests of individuals
  - strong international collaborations
  - diversity in interests and methods
  - but shared interests in solar activity, magnetic fields

### International developments often led by new observations

- Solar Dynamics Observatory (SDO) launched in Feb 2010
- Hinode satellite observing since late 2006



Solar Dynamics Observatory 171Å image of AR 11164 (Feb 2011) (http://sdo.gsfc.nasa.gov/)

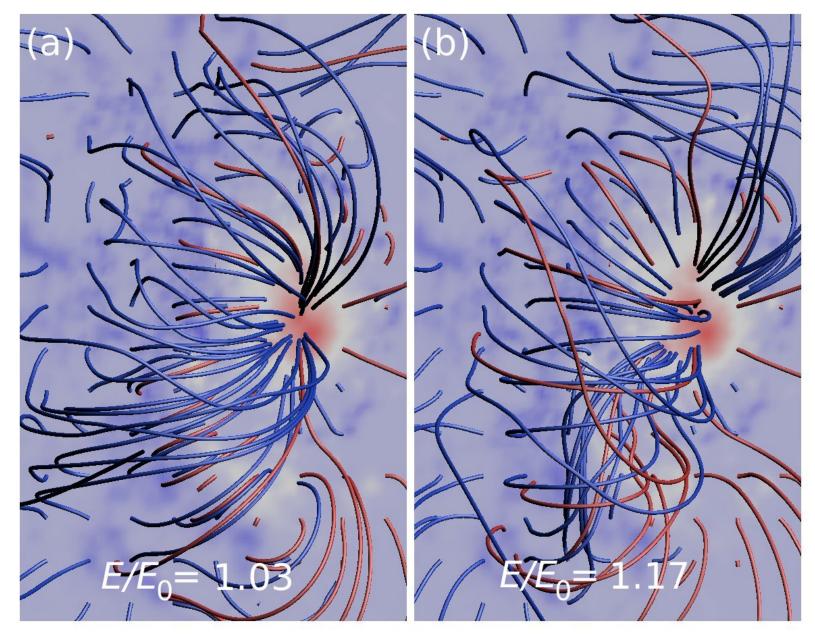
# The University of Sydney: Coronal magnetic field modeling

### Long-running international collaboration

(Wheatland, Sturrock & Roumeliotis 2000; Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008; DeRosa et al. 2009; Wheatland & Régnier 2009; Wheatland & Leka 2011)

development of nonlinear force-free modeling

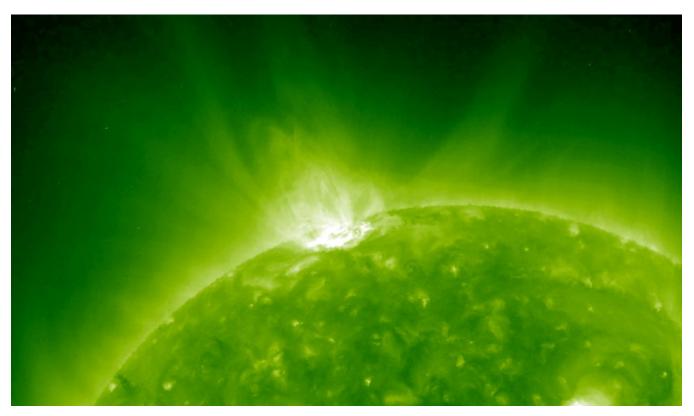
- Data: vector magnetograms
  - photospheric maps of  $\mathbf{B}^{VM} = (B_x^{VM}, B_y^{VM}, B_z^{VM})$ 
    - Iocal helio-coordinates (planar geometry with z vertical)
  - derived from inversion of spectro-polarimetric measurements (e.g. del Toro Iniesta 2003)
  - new generation of instruments
    - ► Hinode satellite (Tsuneta et al. 2008)
    - Solar Dynamics Observatory (SDO) (Scherrer et al. 2006)
- ► **Model:** coronal field **B** assumed force free:


### $\mathbf{J} imes \mathbf{B} = 0$ and $abla \cdot \mathbf{B} = 0$

(1)

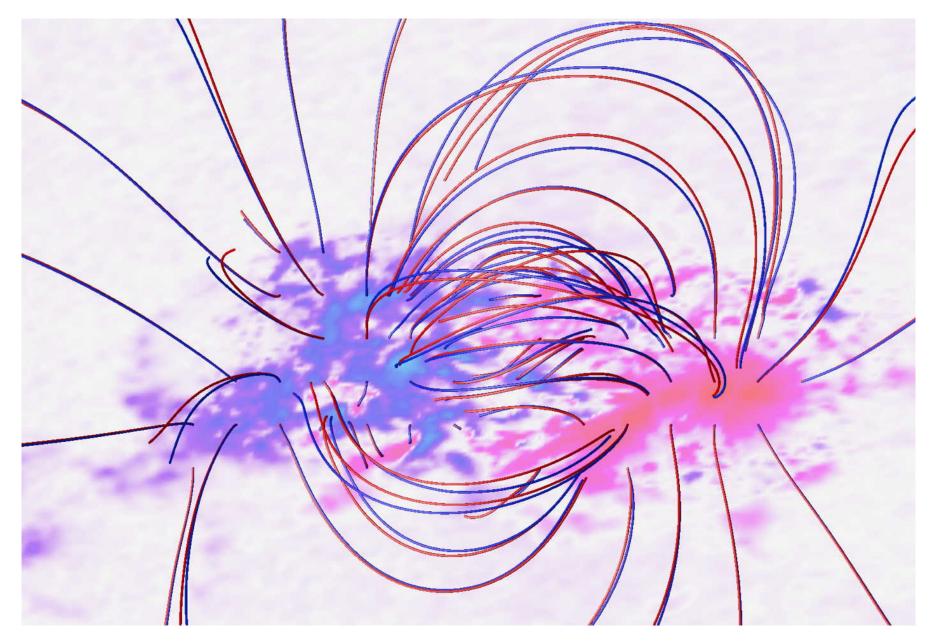
- $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$  is electric current density
- physics: static model in which Lorentz force dominates
- boundary conditions:  $B_z^{VM}$  and  $J_z^{VM}$  (from  $B_x^{VM}$ ,  $B_y^{VM}$ )

Inconsistency problem: BCs specify two force-free solutions


• the P and N solutions (choice of polarity for BCs on  $J_z$ )



Two solutions, one magnetogram: (a) P solution; (b) N solution for AR 10953 (Wheatland & Leka 2011)


Vector magnetogram BCs inconsistent with force-free model

- errors in measurements and field inference
- field at photospheric level is not force free (Metcalf et al. 1995)
- Self-consistency procedure provides a single solution (Wheatland & Régnier 2009)
  - with BCs close to, but not exactly matching, observations
  - permits determination of a unique magnetic energy
- ► Recently applied to active region 11029 (Gilchrist, Wheatland & Leka 2011)



STEREO A observation of AR 11029 (sohowww.nascom.nasa.gov)

Self-consistent solution from Hinode vector magnetogram
calculation on a 440 × 300 × 200 grid



Self-consistent P solution (blue curves) and N solution (red curves) (Gilchrist, Wheatland & Leka 2011)

# The University of Sydney: Sunspot number prediction

- Sunspot number s shows semi-regular variation with cycle
  - plus large daily, weekly, yearly fluctuations
  - solar activity varies accordingly
- Past approaches to modeling/forecasting sunspot number (Kane 2007; Pesnell 2008; Petrovay 2010)
  - time series methods, precursor methods, dynamo modeling
  - focus has been on regular variation with the cycle
  - neglect of short-term variability
- Fokker-Planck model for sunspot number distribution f(s, t): (Noble & Wheatland, ApJ 732, 5 2011)

$$\frac{\partial f}{\partial t} = \frac{1}{2} \frac{\partial^2}{\partial s^2} \left[ \sigma^2(s,t) f(s,t) \right] - \frac{\partial}{\partial s} \left[ \mu(s,t) f(s,t) \right]$$
(2)

- $f(s, t)\Delta s$ : probability number is between  $s, s + \Delta s$  at time t
- $\mu(s, t)$  describes deterministic variation
- $\sigma^2(s, t)$  describes stochastic variation
- general description of intrinsic sunspot number variability

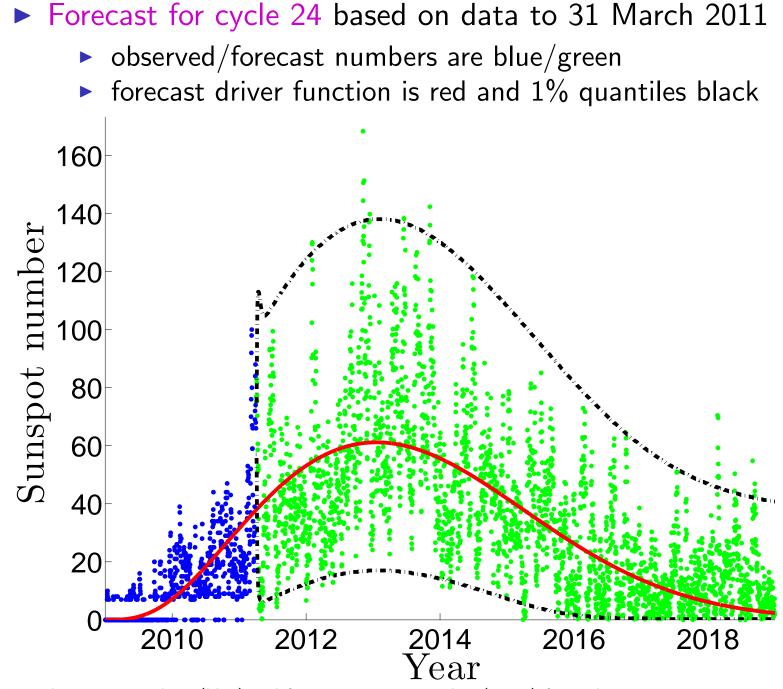
Model for deterministic variation:

$$\mu(s,t) = \kappa \left[ \theta(t) - s \right]$$
 with  $\kappa > 0$  (3)

•  $\theta(t)$  is a driver function describing the cycle variation

suitable modeling choice: (Hathaway et al. 1994)

$$\theta(t) = \frac{a(t - t_0)^3}{\exp\left[-(t - t_0)^2/b^2\right] - c}$$
(4)


• eq. (3) forces s to return to the value  $\theta(t)$  with time scale  $\kappa^{-1}$ 

Model for stochastic variation

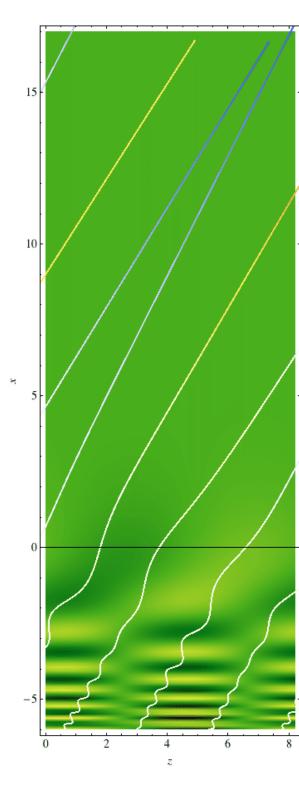
$$\sigma^2(s,t) = \beta_0 + \beta_1 s + \beta_2 s^2 \quad \text{with } \beta_i \ge 0 \tag{5}$$

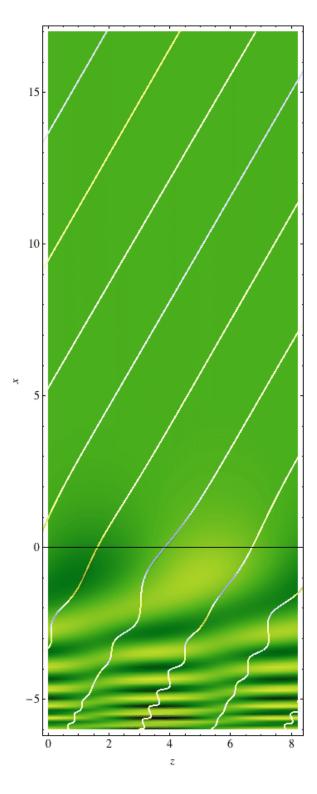
variance increasing with sunspot number (observed property)

- Model parameters  $\mathbf{\Omega} = [a, b, c, \kappa, \beta_0, \beta_1, \beta_2]$ 
  - estimated from observations using Maximum Likelihood
- ► Eq. (2) may then be solved from  $f(s_0, t_0) = \delta(s s_0)$ 
  - where  $s_0$  is sunspot number at current time  $t_0$ ...
  - …to make predictions and simulate future numbers



Observed sunspot numbers (blue) and forecast sunspot number (green) for cycle 24 (Noble & Wheatland, submitted to Solar Physics 2011)

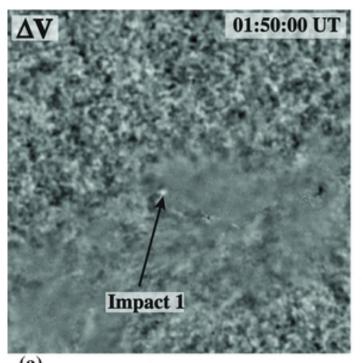

# Monash University: Fast-to-Alfvén wave conversion

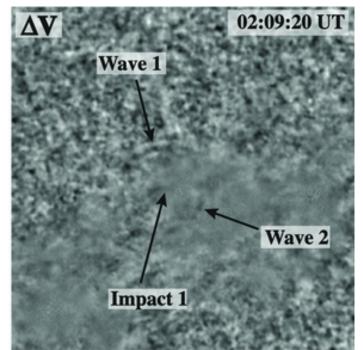

(Paul Cally & Shelley Hansen, ApJ 738, 119, 2011)

Magnetohydrodynamic (MHD) waves observed in corona (Nakariakov & Verwichte 2005)

- mode conversion expected to occur
- important for coronal/active region seismology
- Fast MHD waves enter the solar atmosphere from below through sunspots and other magnetic field regions
- They reflect off the steep Alfvén speed gradient
- However, around the reflection point and higher (in evanescent region) they can strongly convert to Alfvén waves
- Conversion strongly depends on orientation relative to B:
  - frame 1.: fast wave moving right  $\Rightarrow$  strong Alfvén conversion
  - ▶ frame 2: identical fast wave moving left ⇒ minimal Alfvén conversion

# Fast-to-Alfvén Conversion Cally and Hansen 2011 (ApJ 738, 119)




## Monash University: Magnetic transients from flares

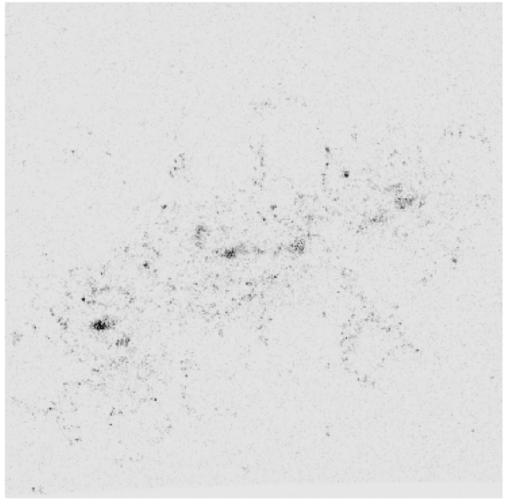
(Lindsey, Donea, Hansen, Martínez-Oliveros, Hudson 2011)

- Some flares produce sunquakes
  - helioseismic response to localised hydrodynamic impulse
  - seen as expanding ripples at photosphere in Dopplergrams (Kosovichev & Zharkova 1998)
- Generation of seismic response not understood (Hudson 2011)
- X2.2 flare on 15 Feb 2011 in NOAA AR11158
  - first acoustically active flare of solar cycle 24 (Kosovichev 2011)
  - first transient observed by Solar Dynamics Observatory (SDO)





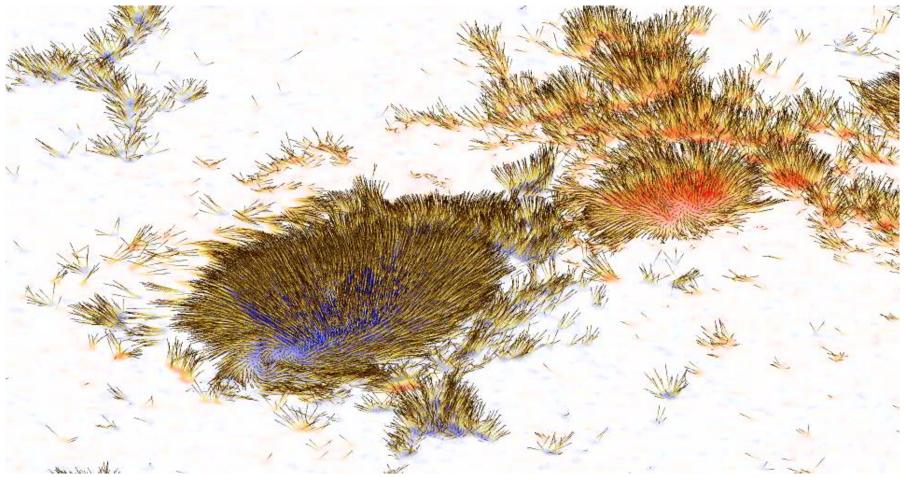
(a) Kosovichev (2011)


(b)

15 Feb flare: 5-min oscillations in LoS magnetic signature

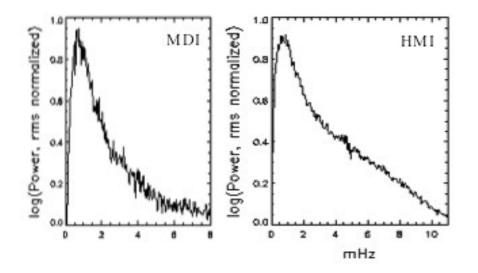
(Lindsey, Donea, Hansen, Martínez-Oliveros, Hudson 2011)

- at sites of strong magnetic transients in flare impulsive phase
- observed both before and after the flare


Mean Square Magnetic Variation



Pre-flare 3 mHz


# James Cook University: The Sun and its magnetic fields

- Solar Dynamics Observatory Helioseismic & Magnetic Imager (Scherrer et al. 2006)
  - full disk photospheric vector magnetic field/Dopplergrams
  - 45 sec/90 sec cadence and 0.5 arc sec/pixel

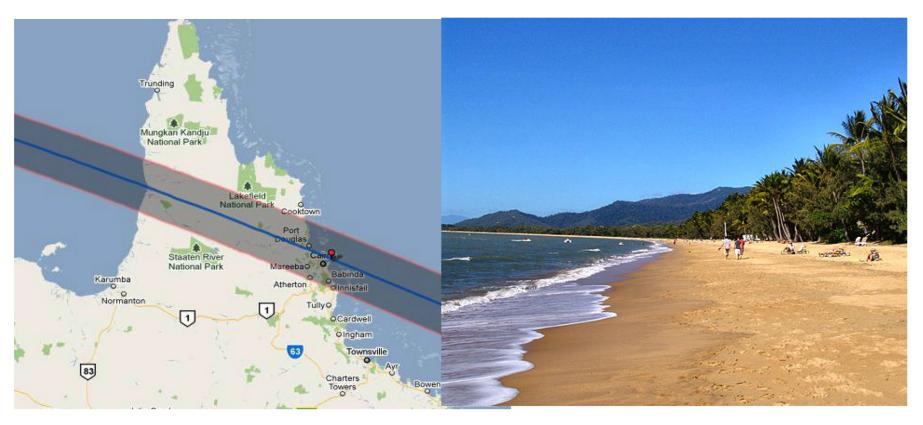


Vector magnetic fields derived from HMI data for a sunspot on 29 March 2010. (SDO HMI team)

- HMI magnetic power spectra are much cleaner than MDI data
  - below: 400-pixel averaged spectra in sunspot penumbra



Improves ability to search for MHD wave modes


(Norton et al. 2011, in preparation)

- MHD waves with rms amplitude  $\delta B \approx 5-15$  gauss inferred
- present in almost all magnetic structures
- nature of wave (standing/propagating/Alfvén etc.) uncertain
- not possible yet to estimate contribution to coronal heating



### Eclipse on the Coral Sea: Cycle 24 Ascending

Nov 12-16, 2012 Palm Cove, Queensland, Australia





# **Summary**

- Australian solar physics research is small and specialised
  - diverse topics, methods defined by individual researchers
  - but shared interest in solar activity, coronal magnetic fields
  - examples presented here
- Research is often led by latest observations
- Work at the University of Sydney:
  - coronal magnetic field modeling (force-free model)
  - stochastic modeling of sunspot number
- Work at Monash University:
  - MHD wave mode conversion
  - magnetic transients associated with sunquakes in flares
- Work at James Cook University:
  - search for MHD wave modes in SDO/HMI data