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Background: Australian research on flares and active regions

I Sunspot magnetic fields power large-scale solar activity
I solar flares, Coronal Mass Ejections (CMEs)

I Various motivations for studying the physics of active regions
I fundamental understanding, interest
I space weather effects of large flares and CMEs

(US National Research Council workshop report, Baker et al. 2008)

I The solar physics research community in Australia is small
(Cally, Wheatland, Melrose, Cairns 2012)

I driven by research interests of individuals
I strong international collaborations
I diversity in interests and methods
I but shared interests in solar activity, magnetic fields



I International developments often led by new observations
I Solar Dynamics Observatory (SDO) launched in Feb 2010
I Hinode satellite observing since late 2006

Solar Dynamics Observatory 171Å image of AR 11164 (Feb 2011) (http://sdo.gsfc.nasa.gov/)

http://sdo.gsfc.nasa.gov/


The University of Sydney: Coronal magnetic field modeling

I Long-running international collaboration
(Wheatland, Sturrock & Roumeliotis 2000; Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008;

DeRosa et al. 2009; Wheatland & Régnier 2009; Wheatland & Leka 2011)

I development of nonlinear force-free modeling

I Data: vector magnetograms
I photospheric maps of BVM = (BVM

x ,BVM
y ,BVM

z )
I local helio-coordinates (planar geometry with z vertical)

I derived from inversion of spectro-polarimetric measurements
(e.g. del Toro Iniesta 2003)

I new generation of instruments
I Hinode satellite (Tsuneta et al. 2008)

I Solar Dynamics Observatory (SDO) (Scherrer et al. 2006)

I Model: coronal field B assumed force free:

J× B = 0 and ∇ · B = 0 (1)

I J = µ−1
0 ∇× B is electric currrent density

I physics: static model in which Lorentz force dominates
I boundary conditions: BVM

z and JVM
z (from BVM

x , BVM
y )



I Inconsistency problem: BCs specify two force-free solutions
I the P and N solutions (choice of polarity for BCs on Jz)

Two solutions, one magnetogram: (a) P solution; (b) N solution for AR 10953 (Wheatland & Leka 2011)



I Vector magnetogram BCs inconsistent with force-free model
I errors in measurements and field inference
I field at photospheric level is not force free (Metcalf et al. 1995)

I Self-consistency procedure provides a single solution
(Wheatland & Régnier 2009)

I with BCs close to, but not exactly matching, observations
I permits determination of a unique magnetic energy

I Recently applied to active region 11029 (Gilchrist, Wheatland & Leka 2011)

STEREO A observation of AR 11029 (sohowww.nascom.nasa.gov)

sohowww.nascom.nasa.gov


I Self-consistent solution from Hinode vector magnetogram
I calculation on a 440× 300× 200 grid

Self-consistent P solution (blue curves) and N solution (red curves) (Gilchrist, Wheatland & Leka 2011)



The University of Sydney: Sunspot number prediction

I Sunspot number s shows semi-regular variation with cycle
I plus large daily, weekly, yearly fluctuations
I solar activity varies accordingly

I Past approaches to modeling/forecasting sunspot number
(Kane 2007; Pesnell 2008; Petrovay 2010)

I time series methods, precursor methods, dynamo modeling
I focus has been on regular variation with the cycle
I neglect of short-term variability

I Fokker-Planck model for sunspot number distribution f (s, t):
(Noble & Wheatland, ApJ 732, 5 2011)
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I f (s, t)∆s: probability number is between s, s + ∆s at time t
I µ(s, t) describes deterministic variation
I σ2(s, t) describes stochastic variation
I general description of intrinsic sunspot number variability



I Model for deterministic variation:

µ(s, t) = κ [θ(t)− s] with κ > 0 (3)

I θ(t) is a driver function describing the cycle variation
I suitable modeling choice: (Hathaway et al. 1994)
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a (t − t0)
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/b2
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(4)

I eq. (3) forces s to return to the value θ(t) with time scale κ−1

I Model for stochastic variation

σ2(s, t) = β0 + β1s + β2s
2 with βi ≥ 0 (5)

I variance increasing with sunspot number (observed property)

I Model parameters Ω = [a, b, c , κ, β0, β1, β2]
I estimated from observations using Maximum Likelihood

I Eq. (2) may then be solved from f (s0, t0) = δ(s − s0)
I where s0 is sunspot number at current time t0...
I ...to make predictions and simulate future numbers



I Forecast for cycle 24 based on data to 31 March 2011
I observed/forecast numbers are blue/green
I forecast driver function is red and 1% quantiles black
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Observed sunspot numbers (blue) and forecast sunspot number (green) for cycle 24

(Noble & Wheatland, submitted to Solar Physics 2011)



Monash University: Fast-to-Alfvén wave conversion
(Paul Cally & Shelley Hansen, ApJ 738, 119, 2011)

I Magnetohydrodynamic (MHD) waves observed in corona
(Nakariakov & Verwichte 2005)

I mode conversion expected to occur
I important for coronal/active region seismology

I Fast MHD waves enter the solar atmosphere from below
through sunspots and other magnetic field regions

I They reflect off the steep Alfvén speed gradient

I However, around the reflection point and higher (in
evanescent region) they can strongly convert to Alfvén waves

I Conversion strongly depends on orientation relative to B:
I frame 1.: fast wave moving right ⇒ strong Alfvén conversion
I frame 2: identical fast wave moving left ⇒ minimal Alfvén

conversion
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Monash University: Magnetic transients from flares
(Lindsey, Donea, Hansen, Mart́ınez-Oliveros, Hudson 2011)

I Some flares produce sunquakes
I helioseismic response to localised hydrodynamic impulse
I seen as expanding ripples at photosphere in Dopplergrams

(Kosovichev & Zharkova 1998)

I Generation of seismic response not understood (Hudson 2011)

I X2.2 flare on 15 Feb 2011 in NOAA AR11158
I first acoustically active flare of solar cycle 24 (Kosovichev 2011)

I first transient observed by Solar Dynamics Observatory (SDO)

Kosovichev (2011)



I 15 Feb flare: 5-min oscillations in LoS magnetic signature
(Lindsey, Donea, Hansen, Mart́ınez-Oliveros, Hudson 2011)

I at sites of strong magnetic transients in flare impulsive phase
I observed both before and after the flare



James Cook University: The Sun and its magnetic fields

I Solar Dynamics Observatory Helioseismic & Magnetic Imager
(Scherrer et al. 2006)

I full disk photospheric vector magnetic field/Dopplergrams
I 45 sec/90 sec cadence and 0.5 arc sec/pixel

Vector magnetic fields derived from HMI data for a sunspot on 29 March 2010. (SDO HMI team)



I HMI magnetic power spectra are much cleaner than MDI data
I below: 400-pixel averaged spectra in sunspot penumbra

I Improves ability to search for MHD wave modes
(Norton et al. 2011, in preparation)

I MHD waves with rms amplitude δB ≈ 5–15 gauss inferred
I present in almost all magnetic structures
I nature of wave (standing/propagating/Alfvén etc.) uncertain
I not possible yet to estimate contribution to coronal heating





Summary

I Australian solar physics research is small and specialised
I diverse topics, methods defined by individual researchers
I but shared interest in solar activity, coronal magnetic fields
I examples presented here

I Research is often led by latest observations
I Work at the University of Sydney:

I coronal magnetic field modeling (force-free model)
I stochastic modeling of sunspot number

I Work at Monash University:
I MHD wave mode conversion
I magnetic transients associated with sunquakes in flares

I Work at James Cook University:
I search for MHD wave modes in SDO/HMI data


	Background
	Australian research on flares and active regions

	The University of Sydney
	Coronal magnetic field modeling
	Sunspot number modeling

	Monash University
	Fast-to-Alfvén wave conversion
	Magnetic transients from flares

	James Cook University
	The Sun and its magnetic fields

	Summary

