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Background: Solar flares

I Magnetic explosions in the Sun’s corona
I large flares influence local “space weather”

I Need to accurately model the coronal field

Data: Hinode/SOT



Background: Vector magnetograms

I Polarisation state of photospheric lines measured
I Vector magnetic field inferred (“inversion”)

I map of B at photosphere (“vector magnetogram”)

I Problems:
I instrumental uncertainties
I validity/reliability of the inversion
I 180 degree ambiguity in transverse field

I New generation of high resolution instruments
I SOLIS/VSM: ground based, full disk
I Hinode/SOT: satellite launched in 2006
I SDO/HMI: to be launched in 2009

I In principle, boundary conditions for coronal field modelling



Data: Hinode/SOT (Schrijver et al. 2008)



Background: Nonlinear force-free magnetic fields

I Force-free field B satisfies

(∇× B)× B = 0

∇ · B = 0 (1)

I suitable model for the coronal magnetic field
I current density J = µ−1

0 ∇× B is parallel to B
I coupled nonlinear PDEs

I Alternative form:

∇× B = αB

B · ∇α = 0 (2)

I force-free parameter α is constant along field lines



I Boundary conditions (Grad & Rubin 1958):
I Bn in boundary
I α in boundary over region where Bn > 0 or where Bn < 0

I over “one polarity”
I we label the polarities P and N respectively
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I Note that J = αB/µ0

I alternatively, BCs for Jz = αBz/µ0 over P or over N

I Nonlinear force-free BVPs are hard to solve
I Variety of iterative numerical methods (Wiegelmann 2008)

I demonstrated to work on test cases (Schrijver et al. 2006)

I not all methods use correct BCs

I Current-field iteration (Grad & Rubin 1958)

I “Picard” iteration: at iteration k + 1, solve

∇× Bk+1 = αkBk

Bk+1 · ∇αk+1 = 0 (3)

I Fast current-field iteration (Wheatland 2007)

I order N4 (grid with N3 points)
I parallel code (OpenMP)



I Bipole test case
I B-lines blue, J-lines yellow



Background: The problem – two solutions

I Force-free modelling from solar data
I assume locally planar photosphere (z = 0 plane)
I Bz(x , y , 0) from vector magnetogram
I α(x , y , 0) from magnetogram values via

α(x , y , 0) =
1

Bz

(
∂By

∂x
− ∂Bx

∂y

)∣∣∣∣
z=0

(4)

for points with Bz(x , y , 0) > 0 (P) or Bz(x , y , 0) < 0 (N)

I Workshops on application to Hinode/SOT data
I different force-free methods produce different solutions

(Schrijver et al. 2008; DeRosa et al. 2009)

I energy estimates do not agree
I current-field iteration solutions not self-consistent

I P and N choices for BCs produce different solutions



I AR 10953 on 30 April 2007 (DeRosa et al. 2009)

I P solution (blue) and N solution (red)



I Boundary conditions inconsistent with force-free model
I errors in field determination
I field at photospheric level is forced (Metcalf et al. 1995)

I Necessary conditions for a force-free field (Molodenskii 1969)

I integrals representing net force, torque
I non-zero for solar data
I “preprocessing” applied to enforce these conditions...

(Wiegelmann et al. 2006)

I ...but they are necessary, not sufficient
I preprocessed BCs still inconsistent with the force-free model

(DeRosa et al. 2009)

I Alternative approach:
I find the “closest” force-free solution to the observed data



Method: Using both solutions

I Vector magnetogram provides boundary values α0 ± σ0

I Apply current-field iteration using α0 over P
I solution field lines map α0 values in P to points in N
I defines new boundary values (α1 ± σ1) at points in N

I Apply current-field iteration using α0 over N
I solution field lines map α0 values in N to points in P
I defines new boundary values (α1 ± σ1) at points in P

I The two solutions define a complete set of α1 ± σ1 values
I new α boundary values at points in P and N

I We have two possible sets of boundary values
I need to decide on a most probable value at each point
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Method: Bayesian decision making

I Bayes’s theorem:

P(M|D, I ) ∝ P(D|M, I )P(M, I ) (5)

I P is probability, M a model, D data, I other information
I here M is the value of α, D = (α1, σ1) and I = (α0, σ0)

I Assuming Gaussian errors

P(D|M, I ) ∝ e−
1
2
(α−α1)2/σ2

1

P(M, I ) ∝ e−
1
2
(α−α0)2/σ2

0 (6)

I Hence

P(M|D, I ) = exp

[
−(α− α0)

2

2σ2
0

− (α− α1)
2

2σ2
1

]
(7)



I dP/dα = 0 implies most probable value

α = α2 =
α0/σ2

0 + α1/σ2
1

1/σ2
0 + 1/σ2

1

(8)

I for constant uncertainties α2 = 1
2 (α0 + α1)

I Corresponding uncertainty

σ2 =

(
1

σ2
0

+
1

σ2
1

)−1/2

(9)

I assuming Gaussian behaviour of P around α = α2

I Values α2 still inconsistent with the force-free model
I but closer to consistency



Method: Iteration
I Repeat the procedure, starting with α2 ± σ2

I “self-consistency cycles”
I label cycles by solutions (k = 1, 2 constructed at cycle 1)

Bayesian decision making
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Application to Hinode/SOT data: AR 10953

I AR 10953 at 22:30 UT on 30 June 2007 (DeRosa et al. 2009)

I (Bx ,By ,Bz) on 320× 320 grid over 185.6 (Mm)2

I Hinode data over only part: rest has SOHO/MDI Bz values
I α0 obtained by centred differencing of Bx and By

I α0 = 0 for MDI data
I uncertainties not available, so assumed constant

Field Current density



I Calculation on 320× 320× 256 grid
I 10 self-consistency cycles
I 20 current-field iterations for each solution
I run on one node (8 cores) of Science Faculty HPC

Cycle 1 Cycle 10

k = 1 (blue), k = 2 (red) k = 19 (blue), k = 20 (red)



I Self-consistency achieved!



I Quantitative measures confirm convergence
I Energy Ek of solution k in units of potential energy E0

I E19 and E20 differ by < 0.03%

I Mean vector error (Schrijver et al. 2006)

MVEk =
1

NxNyNz

∑
i

|B(k)
i − B

(k−1)
i |

|B(k−1)
i |

, (10)

I reduced by more than a factor of 60

I Changes in field components are large
I RMS changes: ∆Bx ≈ 120 G, ∆By ≈ 100 G
I partly due to artificial embedding within MDI data
I cf. preprocessing: ∆Bx ,By ≈ 60 G, ∆Bz ≈ 80 G





I Currents reduced in magnitude overall by averaging
I but basic structures remain

I Application a “proof of concept”
I uncertainties should be assigned
I embedding in MDI data is undesirable



I Comparison with Hinode/XRT image



Summary

I Vector magnetograms enable coronal field modelling
I Nonlinear force-free model appropriate in the corona

I but photospheric boundary data is not force-free
I different solutions for the P and N choices for BCs on α

I Method to calculate a self-consistent nonlinear force-free field
I calculate P and N solutions
I use solutions and Bayes’s theorem to decide on new BCs on α
I iterate

I Demonstrated to work on Hinode/SOT data
I a “proof of concept”
I should be improved by including uncertainties
I should be improved by using only vector magnetogram data
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