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Chapter 1

Properties of Radiation

References: Rybicki and Lightman, Bowers and Deeming

1.1 Introduction

Almost all of the information we receive from astrophysical objects comes in the form
of electromagnetic radiation. Hence we begin this course by defining some terms used
to describe macroscopic properties of radiation. Mechanisms for producing radiation
are not considered at this point.

The solid angle subtended at a point by a projected area dA a distance R from the
point is dQ2 = dA/R?. In spherical polar co-ordinates df) = sinfdf d¢. The unit of
solid angle is the steradian. The complete solid angle (including all directions) is 47w
steradians, since [; sin 6 d6 fozw d¢ = 4m.

In astrophysics texts, cgs units are frequently met. For completeness, note that an
erg is 1077 Joules and a dyne is 10~° Newtons.

As a review from earlier physics courses a list of the names, wavelengths, energies
and temperatures of various ranges of the electromagnetic spectrum is tabulated below.

X (m) v (Hz) E (eV) T (K)
radio > 1073 < 1012 <1073 < 10!
IR 1079103 102 —=10" 1073 — 10° 104
visible 10-6 1015 10° 1045
Uv 1073 — 1076 105 — 107 100 — 102 10° — 109
Xray 100" —=10"% 107 — 10 102 — 10° 108 — 109
v ray <1071 > 1019 > 10° >10°

1.2 Terms used to describe radiation

When the scale of a system greatly exceeds the wavelength of radiation the radiation
can be considered to travel in straight lines (as rays) in free space or in a homogenous
medium. The resulting theory of radiation is known as transfer theory, and is widely
applicable in astrophysics.
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1.2.1 Radiative flux

Consider a small element of area dA exposed to radiation for a time dt. The total energy
dFE passing through the surface in that time is expected to be proportional to dA dt:

dE = FdAdt. (1.1)

The constant of proportionality F is the radiative flux, i.e. energy passing through unit
area in unit time. The dimensions of flux are Jm=2s7!, i.e. Wm—2.
Frequently the flux per unit range of frequency is specified. The above definition
then becomes
dE = F, dAdtdv. (1.2)

1.2.2 Intensity or brightness

The radiation flux may include incoming rays from all directions. The intensity (or
specific intensity) gives the energy passing through unit area in unit time from a specified
direction. Because a single ray carries essentially no energy, it is necessary to consider
incoming rays from a small range of directions defined by a solid angle df2. The formal
definition of intensity is as follows. Consider a small area dA perpendicular to a given
ray defined by a direction 2 and a small solid angle df2? about the ray. The total energy
crossing dA from all rays within the solid angle df2 is

dE = I, dA dt dv d. (1.3)

The quantity I, = I, (v, 2) is the intensity, with units of Wm~=2Hz!ster 1.

Next consider the energy crossing dA from rays in a small solid angle about a direc-
tion © at an angle 6 to the normal to dA. The area pependicular to the direction €2 is
cosf dA, and so in this case

dE =1, cosOdAdtdv dSd. (1.4)

The total energy associated with all directions is obtained by integrating (1.4) over solid
angle. Comparing the result with the definition of flux, Equation (1.2) gives the relation
between flux and intensity:

F, z/I,, cos 6 dS. (1.5)

The term brightness (denoted B, ) describes the same physical quantity as intensity.
As a general rule, ‘brightness’ is used when describing radiation at a source, while
‘intensity’ is used when talking about radiation received by an observer.

It is also common to refer to average intensity J,, which is I, averaged over all
directions:

1
J, = in /IUdQ. (1.6)

An important property of specific intensity is that it is conserved along a ray in free
space. To see this, consider a chosen ray and choose two points along the ray separated
by a distance R. Construct small areas dA; and dAs normal to the ray at the chosen
points. In free space the amount of energy carried by rays intersecting both dA; and

dAs must be constant, and so we have
L,71 dA1 dthdQl =1y2 dAthdl/dQQ, (17)

where I,,; and I, 2 are the specific intensities at the two chosen points, and df}; and
d)y are the solid angles subtended at each point by the small area at the other point.
Since dQ; = dAy/R? and dQy = dA;/R?, we have

Il/,l = Il/.,27 (18)
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and since the distance between the points is arbitrary this means

dl,
- 1.
7 =0 (1.9)

where s is distance along a ray. In other words specific intensity is constant along a ray.

1.2.3 Momentum flux

We can think of the integrand in (1.5) as defining the differential amount of flux dF, =
I, cos 0dS2 associated with the solid angle df2, which is oriented at an angle 6 to an
area dA. The momentum of a photon with energy E is E/c, and so the momentum flux
(momentum per unit time, per unit area, which is equivalent to pressure) associated with
the radiation coming from the solid angle df2 and crossing dA is dF, /c. The component
of the momentum flux normal to dA is dF, cosf/c, and so the total momentum flux
normal to dA is

1
Dy = — /I,, cos® 0 dQQ. (1.10)
c

The units of momentum flux are Nm—2Hz 1.

1.2.4 Total (integrated) quantities

It is always possible to integrate over frequency to obtain the total intensity, flux, and
momentum flux:

IZ/ 1,dv, (1.11)

0

FZ/ F,dv, (1.12)
0

p:/ pudv. (113)
0

1.2.5 Energy density

The specific energy density u, is usually taken as the radiation energy per unit volume,
per unit frequency range. To determine this we introduce the energy density w, () per
unit frequency and per unit solid angle associated with a direction Q. (The units of
u, () are Jm~3Hz !ster—!.) Consider a cylinder with axis along € and with cross-
sectional area dA and length cdt. The total energy in this cylinder associated with rays
about € is

dE = u,(Q) dA cdt dQ2 dv. (1.14)

All of the radiation moving in the direction €2 will cross the area dA at the end of
the cylinder in the time dt. Hence another estimate for the energy in the cylinder is
provided by (1.3). Equating (1.3) and (1.14) gives

u () = 2, (1.15)

and we see that the specific intensity is essentially the specific energy density associated
with the given direction. Integrating over all directions gives

Uy = /uy(ﬂ) dQ = l/I,, dQ, (1.16)

C

or A
wy = —J,, (1.17)
C
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in terms of the mean intensity J,. The total radiation energy density u (in Jm~3) is
obtained by integrating over all frequencies:

4 oo
u=" [ J,dv. (1.18)
¢ Jo
In the tutorial problems for this week it is shown that for isotropic radiation ([, is
independent of direction) there is a useful relation between the total energy density and

total radiation pressure:
p=—-u. (1.19)

1.2.6 Inverse square law

How is the constancy of specific intensity along a ray in free space consistent with the
inverse square law for decline in flux with distance from a source? To understand this
point, consider Figure 1.1. A sphere with radius R emits with a uniform brightness By
(all rays leaving the sphere have the intensity Bp). The total flux at a point P at a
distance r from the centre of the sphere is

F = /Icos@dﬂ

27 28
= BO/ dgb/ sin 6 cos 0 df, (1.20)
0 0

where 0, = sin~! R/r is the angle of a ray from P that is tangent to the sphere, as
shown in Figure 1.1. Performing the integrals gives

F =By (?)2, (1.21)

which is the inverse square law. If we substitute 7 = R we obtain the result that the
flux at a surface of uniform brightness By is

F = 7B,. (1.22)

1.3 Thermal radiation

In an enclosure with walls maintained at a constant temperature 7', radiation reaches a
state of thermodynamic equilibrium with the enclosure, i.e. there is a state of balance
between emission and absorption of radiation by the walls of the enclosure. The intensity
of the radiation field inside the enclosure is then described by the Planck law,

2hv3 hv -1
B, = — — ) -1 . 1.2
= o () 1] 129

The same spectrum is produced by a hypothetical ‘blackbody,” i.e. a body that absorbs
(and does not reflect) incident radiation.

The quantity B, is the brightness per unit frequency range. The brightness per unit
wavelength range, B) is obtained by noting that By = B, |dv/d)|, and hence

2hc? he -1
B, = 22¢ e ) g 1.24
AT {GXP<)\I€BT) ] (1.24)

Figure 1.2 shows the Planck spectrum for temperatures 7' = 1,10, 100, ..., 103K (the
lowest curve in the figure is the spectrum for T = 1K, and the highest curve is for
T = 10%K).

Two approximations to the Planck law are commonly encountered.
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r

Figure 1.1: Flux from a sphere of uniform brightness.

1.3.1 The Rayleigh-Jeans law

If hv < kT (i.e. at low frequencies and/or high T, situations frequently met in the
radio spectrum) then the exponential in the denominator can be expanded as a series
and terms above first order can be dropped. This leads to

202

Equation (1.25) is the Rayleigh-Jeans law, and corresponds to the power-law behaviour
of the spectra at low frequencies in Figure 1.2.

1.3.2 The Wien law

If hv > kpT (i.e. high v and/or low T'), then the exponential term in the denominator
is much larger than unity, and we have

2h13 —hv
BU = 7 exp (kB—T) N (126)

which is known as the Wien law. This behaviour corresponds to the steep decline in
the spectra at large frequency seen in Figure 1.2.
There are two other useful relations for thermal radiation.

1.3.3 The Stefan-Boltzmann law

Integrating (1.23) over all frequencies leads to

o0 QkAETE [ g3
B(T) = B,dv=="E dx. 1.27
(T) A v (%BA L (1.27)

The integral is found in standard tables and has the value 7¢/15. Hence we have

mn:%ﬂ, (1.28)
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Figure 1.2: Blackbody spectra for T = 1, 10, 100, ..., 108K.
where g
_ 2mkp ~ -8 —27,—4
o= o3 ™~ 5.67 x 107°Wm ™ “K (1.29)

is the Stefan-Boltzmann constant. Using the earlier result (1.22), we have that the
emergent flux from a surface of uniform brightness is 7 times the brightness, and hence
the flux at the surface of a blackbody is

F =oT*, (1.30)

which is the usual form of the Stefan-Boltzmann law. The steep dependence of flux on
temperature in this law is apparent in Figure 1.2: the flux is the area under each Planck
curve, and this clearly increases rapidly with temperature.

1.3.4 The Wien displacement law

The Wien displacement law gives the value of the frequency, vyax, at which the Planck
spectrum is a maximum. To determine this we need to solve

0B,

o = 0. (1.31)

V=Vmax

This leads to the equation z = 3(1 — e~ %), where & = hvpmax/(kpT), which has the
(approximate) solution = ~ 2.82. Hence we have

Amax ~ 2.82k5T, (1.32)

or
Vmax = 5.88 x 10'°T Hz. (1.33)

The linear increase of vy« with temperature is apparent in Figure 1.2.
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The wavelength Apax at which B) is maximum can be determined by a similar
procedure. The result is
Amax I’ = 0.00290 m K. (1.34)

Note that the peaks of B, and By do not occur at the same places in frequency and
wavelength, i.e. ApaxVmax # C-

1.3.5 Temperature from the Planck Law.

The radiation emitted by a body can be used to obtain a measure of its temperature,
by matching it in some way to the Planck law. There are different ways of doing this,
leading to different measures of temperature.

The Brightness Temperature

This is obtained by matching the measured I, with that from the Planck law (or one of
its approximations), i.e. for any value of I,, the brightness temperature T(v) is defined
by

I, = B,(Ty), (1.35)

where the right hand side of (1.35) is the Planck spectrum. At radio frequencies it is
common to use the Rayleigh-Jeans law, in which case

202
and hence
¢ 1.37
Ty =——1,. .
b 2V21€B ( )

If the emitting object is a blackbody, then the brightness temperature will be the tem-
perature of the source. Coherent emission processes (e.g. laser or maser emission, non-
linear emission processes) may produce radiation with a brightness temperature that
far exceeds the physical temperature of the source, and this can be used as an indicator
of the emission mechamism.

Effective temperature

A second approach involves equating the flux at the source with that predicted by the
Stefan-Boltzmann law for a blackbody. This leads to the effective temperature, Teg:

F =0Tk (1.38)

If the emitting object is a blackbody, then the effective temperature will be the tem-
perature of the source.

An example of effective temperature is provided by the Sun. The spectrum of the
Sun roughly resembles a blackbody, with pieces missing due to absorption in the solar
atmosphere. Modern spacecraft measurements give the flux of energy from the Sun at
the Earth to be Fg = 1.368 kW m~2. The Earth-Sun distance (an astronomical unit, or
AU)is ray = 1.496 x 10 m, so the total radiant output of the Sun (the solar luminosity)
is Lo = 4nriyF = 3.85 x 1026 W. The radius of the Sun is Rg = 6.96 x 10%m, so
the flux at the surface of the Sun is F, = Lg/(47R%) = 6.32 x 10" Wm™2. Equating
this with anH gives an effective temperature Teg = 5778 K. By the Wien displacement
law (1.34), the peak of the spectrum of the Sun is at about 5 x 10~7 m, in the yellow
part of the visible spectrum. Effective temperature (or equivalently colour) is used
to categorise stars. For comparison, hot blue-white stars such as Sirius can have an
effective temperature around 40, 000 K, whereas red giant stars such as Betelguese have
Ter ~ 3000 K.
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Colour Temperature

Often objects emit a spectrum of radiation similar to that of the Planck law for a
blackbody. The colour temperature is obtained by fitting the frequency distribution
of the observed object to that expected from a blackbody. This may be as simple as
measuring the peak wavelength and using the Wien displacement law.

A good example of fitting to a blackbody spectrum is provided by the cosmic mi-
crowave background (CMB), the background radiation in the universe that is believed
to be a remnant of the big bang, and hence to have cosmological significance. Figure 1.3
shows measurements of the CMB from a variety of sources, together with the fit to a
blackbody at 2.726 K.

Wavelength [cm)]
10 1 0.1
— ] O 14 é_ T T T T | TTT T T T T T I TTr 1T T T T T I T1r 1T T I_:
7 : _ :
E E ) & im - wmEs ‘qi"".n"z( E
T 15| = B
I $
TU r 'x. ]
] i Yo
by 10"’ E o %3
= E 7 L
(5] - . .
2 . FIRAS COEE satellite
S, e ] x DMR COBE satellite 3
wy E - A o LBL — Italy  White Min & South Fole 3
@ r i = Princeton ground & balloon ]
@ 18 L UBC sounding rocket
g W F i + Cyanogen  optical E
= E .8 3
EJJ s 2726 F blackbody ]
m I 0-1 g | el I Y | 1 1 1 1 11 11 | 1 1 1 1 1111 | 1 1 1 1 1 1
1 10 100

Frequency [GHz]

Figure 1.3: Cosmic microwave background measurements, and the fit to a blackbody
spectrum. (From http: //spectrum.lbl.gov/www/cobe/CMB_intensity.gif.)
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Problem Set 1

1. Consider an infinite plane with uniform brightness By. Show that the flux at a
point at a distance r from the plane is F' = 7By, independent of the value of r.

2. What is the relation between I,, and I,?

3. Show that for an isotropic radiation field (I, is independent of direction) the flux
is zero, I, = J,, and the radiation pressure and energy density satisfy Equa-
tion (1.19).

4. The Sun radiates approximately as a blackbody at 5778 K. A perfectly black
copper sphere is placed one astronomical unit from the Sun, at which distance the
Sun’s diameter subtends an angle of 0.5°. What is the equilibrium temperature
of the copper sphere ?

(To answer this question, use only the numerical values supplied in the question.)



Chapter 2

Radiative Transfer

References: Rybicki and Lightman, Bowers and Deeming

So far we have considered radiation in free space. If a ray passes through matter, energy
may be added or subtracted from the ray by three processes: emission, absorption and
scattering. The theory describing the resulting variation in the intensity of the radiation
is radiative transfer. The approach is a macroscopic one — the details of the mechanisms
involved will be treated later.

2.1 Emission

Emission is described by the spontaneous emission coefficient j,. This quantity is
referred to as the volume emissivity or just emissivity in some books. The emission
coeflicient is the energy emitted per unit volume, per unit time, per unit solid angle and

per unit frequency range:
dE = 3, dV dt dQ dv. (2.1)

For an isotropic emitter we can also define the radiated power per unit volume, per unit
frequency:
P, =4nj, (2.2)

The spontaneous coefficient does not depend on the intensity of the radiation at the
place where the emission occurs. Later we will meet a stimulated emission coefficient
which does.

An alternate description of spontaneous emission makes use of the specific emissivity
(or again just emissivity) €,, defined for an isotropic emitter by:

dE = eypdthdV@ (2.3)
47

where p is the density at the source, i.e. €, is the energy per unit mass, per unit time
and per unit frequency. Comparing (2.1) and (2.3), we have (for an isotropic emitter):

=22 (2.4)
T
It should be noted that there is some variety in terminology in the literature in this
area.

Consider a beam which travels a distance ds in a time dt through an emitting
material. If the cross section of the beam is dA, then the volume traversed is dA ds,
and the energy added to the beam in the time dt is dF = j,dA ds dt dQ) dv, where df2 is

14
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the element of solid angle describing the beam. All of this energy will leave the volume
dAds in time dt, and so if the intensity associated with the added energy is dI,, we
have from (1.3) that dF = dI,dA d2dt dv, and hence

I, = j,ds. (2.5)

Hence j, can be viewed as the rate of change of intensity with distance.

2.2 Absorption

The absorption coefficient (or volume opacity) is designated a,, (sometimes k, ), and has
units m~!. The definition of the absorption coefficient is that the change in intensity
dI, of a beam with intensity I,, in traversing a distance ds in a medium with absorption
coefficient «, is

dl, = —a, I, ds. (2.6)

Since absorption produces a loss in intensity, dI, is negative, and the negative sign
in equation (2.6) means «, is a positive quantity. There are two ways of thinking of
a,. It can be thought of as the fractional loss in intensity per unit distance or, for an
individual photon, it is the probability of absorption per unit distance.

To understand (2.6), consider a macroscopic model in which there are n randomly
distributed particles per unit volume, each presenting an absorption cross section o,
(units m?) to incident radiation. If the inter-particle distance is large compared with
o,, then the total cross section in a volume dAds is dA.,s = ndAdso,. Thus the
energy absorbed by a beam traversing the medium is, from (1.3)

I,dA.bsdQdt dv = I,(ndAds o,,) dQ dt dv. (2.7)
The absorbed energy must also equal —dI,,dA dS2 dt dv, and so have we have
dl, = —no, I, ds. (2.8)
Comparing (2.6) and (2.8), we have established that
a, = Noy,. (2.9)

The quantity o, is also called the opacity per particle.
An alternative notation involves the mass absorption coefficient (or mass opacity) k.,
which has units of m?kg~!. This is related to the absorption coefficient by: a, = pk,.*
A comment in passing. The quantity 1/«, has dimensions of length and you may
ask yourself: does this length have any physical significance? The answer is yes it does,
it corresponds to the mean free path of the photons. This is the average distance a
photon will travel between successive collisions. We will derive this relation shortly.

2.3 The radiative transfer equation

The radiative transfer equation gives the change in I, with distance. If only absorption
and emission are involved, then equations (2.5) and (2.6) lead to:

dI,
ds

Note that the first term depends on I,,, but the second does not.

= _aUIV +]u (210)

1In consulting text books on emission or absorption you will need to check from the context as to
whether mass or volume units are being used. It may not always be stated explicitly.
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The general problem then becomes that of solving this equation. In practice it may
be necessary to resort to numerical methods. For the moment we consider two cases
with simple solutions.

1. No absorption: when a, = 0 we have

dl,
=Y =, 2.11
7 =7 (2.11)
which is integrable and has the solution:
I, = I,(s0) —|—/ Ju(s')ds'. (2.12)

S0

Hence the increase in brightness is equal to the emission coefficient integrated
along the ray.

2. No emission: when j, = 0 we have

drl,
_ = — UII/7 213
e (2.13)

which is also directly integrable, with the solution:

I, = I,(s0) exp {— / a(s') ds’] . (2.14)

The brightness decreases exponentially with distance along the ray.

2.4 Optical depth

The transfer equation takes a simpler form if we introduce the optical depth 1, by the
relation dr, = «, ds. In integral form the definition is

S
T,(8) = / a,(s")ds’. (2.15)
50

Despite its name, optical depth is a dimensionless quantity. Also note that in some
literature 7, is defined to be a decreasing function of s, i.e. a definition is given that
differs from (2.15) by a minus sign.

A medium is said to be optically thick or opaque when 7, > 1 (the integration in
the definition occurs along a typical path in the medium). A medium is optically thin
or transparent if 7, < 1. Equation (2.14) indicates that when 7, = 1, incident radiation
would be attenuated by a factor of e~! (in the absence of further emission). For an
individual photon, the probability is e ! of not being absorbed. This may help to give
you a mental picture of what optical depth is. Alternatively, recall that the absorption
coeflicient is the reciprocal of the photon mean free path. Using this idea in equation
(2.15) indicates that the optical depth is the ratio of the distance travelled to the photon
mean free path.

The transfer equation [(2.10)] can now be written

dl,

Y =145, 2.16
dr, + ( )

where S, is the source function, defined as the ration of the emission to the absorption
coefficients:

.

v

Sy (2.17)

2

v
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In this formulation I,, and S, are both functions of 7,,. Assuming that S, is a known
function of 7,,, Equation (2.17) is a linear first order ODE, and can be solved by multi-
plying both sides by the integrating factor exp(7,) and integrating. The formal solution
of the transfer equation is:

I,(r,) =1,(0)e" ™ —I—/O ef(TV*T;)SU(TL) dr,, (2.18)

The final intensity is seen to be the initial intensity diminished by absorption, plus the
source function along the path diminished by absorption.

In the case that S, is constant (remember this means a constant ratio of emission
to absorption), Equation (2.18) becomes

I(r,) = L0 ™+5,(1—e"™)
= S, +e ™[L0)-2S5,]. (2.19)

This tells us something interesting. As 7, — oo, (as the radiation travels further),
I, — S,. This has a simple physical interpretation: given a sufficiently large optical
depth the initial intensity becomes irrelevant, and the final intensity is determined only
by the source function of the intervening material. More generally, from Equation (2.16)
we see that if I, < S, then I, will increase along the ray. If I,, > S, then I,, will decrease
along the ray. The source function is the quantity that the specific intensity tends to
approach, and will equal if given sufficient optical depth.

2.5 Kirchoff’s law

Consider an element of thermally emitting material at a temperature T' placed inside
an enclosure that is itself a blackbody at temperature 7. Let the source function of
the material be S,,. The radiation field in which the material initially sits has specific
intensity I, = B, (T), the Planck spectrum. From the arguments in the previous section
we know that if S, > B,, then I, will increase along a ray, and depart from the Planck
spectrum. If S, < B, then I, will decrease along a ray, and again depart from the Planck
spectrum. However, the enclosure plus the material is also a blackbody enclosure, and
so the radiation field cannot depart from B, (T"). Hence we conclude that

Sy = B,(T), (2.20)

or
Ju = aB,(T). (2.21)
Relation (2.21) is known as Kirchoff’s law, and relates the emission and absorption of
a thermal emitter.
The transfer equation for thermal radiation is then

drl,

ds

drl,

dr,

For a blackbody enclosure I, = B,(T') throughout, which trivially satisfies (2.23). It is

important to draw a distinction between blackbody radiation, i.e. a radiation field that

is the Planck spectrum, I, = B,, and thermal radiation, i.e. a radiation field where

the source is the Planck spectrum, S, = B,. According to (2.19), thermal radiation
becomes blackbody radiation for optically thick media.

Finally, note that for a thermal emitter where the temperature is a specified function

of position and hence optical depth, the source function S, = B, is a function of optical
depth and hence the formal solution to the transfer equation (2.18) may be applied.

= —a,I, + a,B,(T), (2.22)

or

=1, + B,(T). (2.23)
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2.6 Mean free path

The mean free path (symbol 1,) is the average distance a photon travels before absorp-
tion. Combining Equations (2.14) and (2.15) we have

I(r,) = I,(0)e ™. (2.24)

If we recognise that the intensity is proportional to the number of photons, Equa-
tion (2.24) may be interpreted as saying that the probability of a photon travelling an
optical depth 7, is e”7. The average optical depth traversed by a photon is obtained
by integrating over all possible optical depths multiplied by their probability:

(1) = / e vdr, = 1. (2.25)
0

In other words the average physical distance travelled by a photon corresponds to an
optical depth of unity. For a medium where «,, is constant, Equation (2.15) becomes
T, = .8, where s is the physical distance travelled through the medium. Equa-
tion (2.25) then becomes

(1) = a,(s) =1, (2.26)

and identifying (s) with the mean free path I,, we have

IL=a,! (2.27)

v

i.e. the mean free path is the reciprocal of the absorption coefficient, as stated at the end
of Section 2.2. Finally, replacing a,, by 1/l, in our definition of 7, establishes formally
that the optical depth is the ratio of the distance travelled to the mean free path:

(2.28)

s
T, = L
If the absorption coefficient is not constant, then the above analysis is not strictly
correct. However we can still speak of a local mean free path.

The paths of photons being randomly absorbed and re-emitted in a medium provides
an example of diffusion. Diffusion is frequently treated by analysing a statistical problem
known as the random walk. Basically this asks if you take a step forward or backward at
random, where will you be after N steps? The answer is that your average position after
N steps will be your starting position, since the problem is symmetrical. However, your
absolute distance from the starting point tends to increase with N. In fact, the average
value of D% (the square of the distance from the starting point after N steps) is NI,
where [ is the length of one step. To see this, consider the situation after N steps. We
have Dy = Dy_1 £ [, where the two possibilities occur with equal probability. Hence

we have
DJ2V—1 +2lDn_1 +1?
D% = or (2.29)
D?\Pl —2lDn_1 + 12,

where the two possibilities on the right of (2.29) occur with equal probability. We require
the average value of D3, ;. This is obtained by adding the averages of the expressions
on the right of (2.29), with a factor of one half to represent the equal likelihood of the
two outcomes. Using the fact that (IDy_1) = (Dy_1) = 0 (by symmetry), this gives

(DX) = (DX_1) + 12 (2.30)

Next note that (D7) = [?. Repeated application of (2.29) then gives that (Dj) = 212
(D3) = 312, etc., i.e.
(D%) = NI?, (2.31)
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as required. Where an average distance from the origin is required it is cutomary
to use the root-mean-square distance D, s = (DJQV>1/ 2. and the preceding discussion
establishes that

Dims = IVN. (2.32)

Using these results we can estimate the number of collisions a photon is likely to
make in moving through matter. If the distance is L and the mean free path is [, then
the probable number of photon collisions is

L2

.2
=1T,,

N
using (2.28).

As an example of an application of these ideas, consider the interior of the Sun. The
solar interior is optically thick: in the solar core the mean free path for photons is [ ~
1072 m, whereas the distance through the medium is the solar radius R = 6.96 x 10% m.
Hence in reaching the photosphere (above which level the atmosphere is optically thin,
at least in the visible), a typical photon has undergone N = (R /1)? ~ 10?! absorptions
and reemissions! In the core of the Sun, the average energy per photon is of order a few
keV, and so the photons are X-rays. By the time the photons reach the surface they
have been degraded to the visible, because as we have seen the output of the Sun peaks
in the yellow part of the visible spectrum.

Equation (2.33) gives an order of magnitude estimate if the medium is optically
thick. For the optically thin case the mean free path is larger than the distance through
the medium, and the random walk analysis is not appropriate. In this case we can make
an estimate as follows. Based on equation 2.24 we can say that the probability of at
least one collision in travelling a distance with optical depth 7, < 1 is

1,(0) = I, (1)

—l—e T, 2.34
IV(O) € T ( )

where the series expansion of the exponential has been used, and only the lowest order
terms have been retained. Since 7, is assumed to be small, the possibility of two
collisions in the given optical depth can be neglected, and then (2.34) represents the
probability of one collision. It then follows that the average number of collisions is

N=0x(1-7)+1x71 ="7,. (2.35)

Comparing Equations (2.33) and (2.35), we see that the dependence of the average
number of collisions on the optical depth is different in the two regimes. To reiterate:

N = { Ty i <l (2.36)

2 ifr, > 1.

v

2.7 Scattering

So far we have not considered the third process for changing the energy associated
with a ray: scattering. Scattering produces emission from an element of material in a
radiation field. As distinct from thermal emission, scattering depends entirely on the
amount of radiation falling on the element. We will consider isotropic scattering (the
scattered radiation is emitted equally into all solid angles). We identify the emission
coeflicient associated with scattering as being proportional to the average intensity of
the radiation field:

Jv =0oudy. (2.37)
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The factor o, is the scattering coefficient. We can recognise (2.37) as a statement of
conservation of energy: the left hand side describes the power emitted per unit volume,
per unit frequency range and per unit solid angle by the element, and the right hand
side represents the power taken out of the radiation field in the element per unit volume,
per unit frequency range and per unit solid angle. With this interpretation the right
hand side represents absorption, and we can identify ¢, as the absorption coefficient of
the scattering process. Hence we can write down the source function for scattering:

S, ==, (2.38)

Oy
The transfer equation for pure scattering is then

L,
ds

—0Oy (Iu - JI/)

o I, + 2 / I,d9. (2.39)
4

Equation (2.39) is an integro-differential equation, and presents a difficult mathematical
problem. We see that scattering makes the problem much more difficult, because the
source function depends on the radiation field and is not specified a priori, as was
assumed in Equation (2.18).

When there is both thermal emission and scattering in a medium, it is necessary
to introduce an absorption coefficient describing the thermal emission as well as the
scattering coefficient ¢,,. The transfer equation becomes

dI,
ds

—Qy, (Il, - By) — Oy (Il/ - JI/)
_ —a,ejﬂ (I, - 5,), (2.40)

where we have introduced the source function

IJBV vYyv
S, = w, (2.41)

o, + o0,

and the effective or net absorption coefficient
ot =a, +0,. (2.42)

The new source function is an average of the individual source functions, weighted by
their respective absorption coefficients. Equation (2.40) is again an integro-differential
equation, and hence is difficult to solve.

2.8 The Einstein coefficients

Kirchoff’s law indicates a relation between a body’s emission and absorption properties,
suggesting some relationship between the processes at an atomic level. Einstein’s analy-
sis of the interaction between radiation and an atom goes as follows. Consider a simple
two level atom in which level one has energy F; and level two has energy Fo = Eq + hiy.
A photon is absorbed in going from the lower to higher level and is emitted in going
from the higher to the lower.

Einstein identified three possible processes:

1. Spontaneous emission: Described by the coefficient Asq, which is the probability
per unit time that an atom in level two will drop to level one.
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2. Absorption: This is a little more complicated, since absorption depends on both
the atom and the incident radiation. If J, is the mean intensity associated with
a frequency v, then the probability of absorption per unit time is J, Byso.

3. Stimulated Emission: Einstein found that in order to obtain the Planck law, an
additional type of emission was required, which depended on the photon density.
This is described in a similar manner to absorption, i.e. .J, Bs; is the probabil-
ity per unit time of a transition from level two to level one due to stimulated
emission. Stimulated emission has an intriguing property. A photon emitted by
stimulated emission is coherent with the stimulating photon. i.e. it travels in the
same direction and has the same phase.

The Einstein coefficients Asq, B2 and By give an alternative description of emission
and absorption, and it is possible to derive relationships between the various coefficients,
as follows.

Suppose that the number of atoms per unit volume in states one and two is n; and
ng respectively. In equilibrium, these numbers will be constant. Thus the number of
transitions from level one to level two per unit volume per unit time must equal the
total rate of transitions per unit volume in the other direction:

n1BiaJ, = noAa1 +noBarJ,. (243)

We also know from statistical mechanics that the numbers of atoms in the two states is

related by:

Z_j - % = exp(—hwo/kpT) (2.44)

Substituting equation (2.44) into (2.43) leads to

As1/Ba

J, =
(312/321) exp (hyo/kBT) -1

(2.45)

Equation (2.45) must equal the Planck function, and by comparison with (1.23) we have
the Einstein relations

Bis = Boy (2.46)
and 13
2hv

Ao = 2 Bs1. (2.47)

How are the Einstein coefficients related to the macroscopic absorption and emission
coefficients? Recall that the amount of energy emitted in volume dV, solid angle df2,
frequency range dv and time dt is dE' = j,dV dQQdvdt. If each atom contributes an
energy hig spread over 47w steradians for each transition, then this must also equal

h
dE — 4_”5(V — vo)ngAgy AV dQdv dt, (2.48)
™

where the delta function 6(v — 1) imposes the requirement that the transition occurs
only at the frequency vy. Equating the two expressions gives

) hv
v = E(S(I/ — Vo)n2A21. (249)

To obtain the absorption coefficient, note that the energy absorbed in the frequency
range dv, solid angle df2, time dt and volume dV will be
h

Y (v — vo)n1 BioL,dV dQ dv dt, (2.50)

dE =
47
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where I,, appears instead of J, because we are considering absorption associated with
a small solid angle d). Taking the volume element to be dAds and comparing (2.50)
with (1.3) and (2.6) gives

hv

o,y = Eé(u — Vo)TLlBlQ. (251)

We have neglected stimulated emission. The name suggests that this effect should be
included as a correction to the emission coefficient (2.49), but because it is proportional
to the intensity, stimulated emission is best treated as negative absorption. Following an
argument analogous to that leading to (2.51) gives the absorption coefficient including
stimulated emission as

hv
&, = E(S(V - I/()) (n1B12 - 7’L2B21) . (252)
This equation together with (2.46) indicates that if no > n; (if there is a population
inversion), then the absorption coeffcient is negative, meaning that I, will increase
along a ray. This is the basis of laser and maser operation. Maser emission is observed
in gas clouds, from supernova remnants and from stars.

2.9 Limb darkening

There are many applications of radiative transport in astrophysics. To conclude this
chapter an example is given, namely an explanation of why the limb of the Sun appears
darker than the centre of the disk, an effect known as limb darkening.

We begin by putting the formal solution of the radiative transport equation into a
different form. Rearranging (2.18) and taking the limit 7, — —o0 gives

1,(0) = / ’ e S(7) dr!,. (2.53)

— 00

We will interpret this equation as describing the intensity I,,(0) emerging from the Sun’s
surface due to the source function S, (7,) of material beneath the surface. Because of
our choice of the surface as the point where 7, = 0, the integral runs over negative
values of the optical depth.

The temperature of material inside the Sun increases radially with distance into the
Sun. To a first approximation we can assume a simple linear increase with radial optical
depth,

S(mv) =a—"br, cosb, (2.54)

where 6 is the angle subtended by a ray at the surface to the centre of the Sun, as shown
in Figure 2.1.

Introducing the radial optical depth ¢, = 7,4 where p = cos 8 and substituting (2.54)
into (2.53) leads to an expression for the intensity I, (0, 1) of emerging radiation corre-
sponding to an angle cosine pu:

0
1,0, 1) = l/ et/ (a —bt,) dt,. (2.55)
w

Evaluating the integral gives
I,(0, 1) = a+ bu. (2.56)

Hence we see that I, = a + b at the centre of the disk, and I, = a at the limb: the
intensity is greatest at disk centre. This result has a simple physical interpretation:
most of the observed radiation along a line of sight comes from the region —1 < 7, < 0.
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Figure 2.1: Geometry to explain limb darkening.

Because of the geometric effect illustrated by Figure 2.1, 7, = —1 correponds to a deeper
value of t,, and hence to material at a hotter temperature, when the radiation comes
from close to disk centre. Hence you are seeing more of the hotter underlying material
when observing close to disk centre.

Although this model is crude, it provides a reasonable approximation to the limb
darkening observed on the Sun.
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Problem Set 2

1. Consider a thermally emitting sphere with a radius R, temperature T' and absorp-
tion coefficent «,,.

(a)

(b)

()
(d)

If the source is optically thin, calculate the total power produced per unit
frequency by emitters in the sphere and divide by the surface area to show
that the flux at the surface of the sphere is

4
(Fv)thin - ?ATI/BU(T))
where A7, = «a,, R is a characteristic optical depth for the sphere.

AR=0"

Figure 2.2: Understanding emission from an optically thick sphere.

Next assume the source is optically thick. We receive emission mostly from
a shell of thickness AR, where a,, AR = 1, as shown in Figure 2.2. Since the
source is optically thick, o, R > 1, and hence AR < R. Show that the total
power produced per unit frequency by emitters in the shell is approximately

Panenn ~ 167> R%B,(T).

Not all of this power escapes: if a photon heads into the region with radius
less than R — AR then it can be assumed to be absorbed. Roughly half the
photons head in, and half head out. Hence show that the flux at the surface
is expected to be about

(Fu)thick ~ 27TBV (T)

What is the exact answer expected in part (b)? Why might the estimate in
(b) be too high?

Show that the effective temperature of an optically thin source is less than
that of an optically thick source.

2. A spherical cloud of gas has radius R, temperature T" and is a distance d from
Earth (R << d). The gas emits thermally at a rate P, (power per unit volume

and
and

per unit frequency range). Answer parts (a) to (d) for both an optically thin
an optically thick cloud.
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(E&—\ earth
J 1b

(a) What is the brightness of the cloud as measured on Earth? Give the answer
as a function of distance b from the cloud centre, assuming that the cloud
can be viewed along rays parallel to a line to its centre (see diagram).

(b) What is the effective temperature of the cloud?

—
o

) What is the flux F}, as measured on earth, due to the whole cloud ?

—~
Q.
~—

How does the cloud’s measured brightness temperatures compare with the
cloud’s temperature?

3. Show that in the Rayleigh-Jeans limit, the transfer equation for thermal radiation
can be rewritten in terms of temperature as:

ﬁ =-T,+1T.

dr,
Solve this equation for the case of a constant temperature 7. Use the solution to
determine the relationship between T and T for radiation emerging from a slab
of emitting material that is optically thick, and for radiation emerging from a slab
that is optically thin.

4. A supernova remnant has an angular diameter # = 4.3 arc minutes and a flux
at 100 MHz of Figo = 1.6 x 10722 Jm—2s~'Hz~!. Assume that the emission is
thermal.

a) Which, if any, approximation to the Planck law might be valid at this fre-
Y. g
quency? What is the brightness temperature 7,7 Was the approximation
valid after all?

(b) The emitting region is actually more compact than indicated by the observed
angular diameter. What effect does this have on the value of T;7

(¢) At what frequency will this object’s radiation be a maximum if the emission
is blackbody?

(d) What can you say about the temperature of the material from the above
results?



Chapter 3

Electromagnetic Radiation I

References: Griffiths, Jackson

3.1 Review of electromagnetism

3.1.1 The Maxwell equations

Classical electromagnetism follows from the Maxwell equations, which describe the elec-
tric field E = E(r, t) and magnetic field B = B(r, t) at a point r in space and at a time
t produced by a charge density p = p(r,t) and a current density J = J(r,t):

v.E=L v.B=o0

€0
OB OE
VxE=-7"  VxB=pud+ ey, (3.1)

where ¢? = (pep) . The sources of the field, p and J are not independant, but rather

are related by conservation of charge,

dp

V- J=—-—. 3.2
ot (3:2)
An important point to keep in mind is that these differential equations apply at a
point in space — there are corresponding integral forms of the Maxwell equations which

apply over extended regions of space.

3.1.2 Units

In this course we use SI units. However, many of the texts in astrophysics, to which
you may need to refer, will use cgs units. The reader interested in the rationale behind
the different systems of units is referred to the Appendix of Jackson’s Classical Electro-
dynamics. The basic units in the cgs system are the centimetre, gram and second. The
unit of force is the dyne and the unit of energy is the erg, and the conversion to Newtons
and Joules has already been mentioned. More importantly in the present context, the
cgs system adopts a different choice of unit for charge, the esu. The resulting system of
units is also known as Gaussian. In Gaussian units the electromagnetic formulae take
different forms to SI. For example, Coulomb’s law is written as

_ 142
F= 2

26
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which lacks a factor of (47ep) ! by comparison with the SI version. In the cgs/Gaussian
system the Maxwell equations become:

To convert any SI formula to Gaussian, the following prescription may be used.
Make no change to ¢, p, E, V and J, and make the following substitutions:

47

2’

1
B—>B/C7 A—>A/C, 60—>4—7 Mo —
m

3.1.3 Potentials

The Maxwell equations comprise a set of coupled first order partial differential equations
for the components of the magnetic and electric fields. Whilst they can be solved directly
in certain simple situations, it is often convenient to introduce potentials, which obey
a smaller number of second order equations, and satisfy some of the Maxwell equations
automatically.

A vector quantity with a vanishing divergence can be written as the curl of a vector
potential, so from V - B = 0 it follows that we can introduce the vector potential A
defined by

B=VxA. (3.3)
Substituting (3.3) into V x E = —9B/0t gives
0A

A vector quantity with a vanishing curl can be written as the gradient of a scalar
potential, and so it follows that we can introduce the potential V' defined by

E=-VV - —. 3.5
5 (3.5)
The important point to note is that the potentials A and V automatically satisfy two
of the Maxwell equations.
Substituting (3.3) and (3.5) into the two remaining Maxwell equations gives (exer-
cise):

9
V2V + 5 (V-A)=—p/eo (3.6)
and D’A )
1 1oV
2 [ —— . _ = —
VA - 55 =V (v At 5o > piod. (3.7)

For given electric and magnetic fields, the potentials are not uniquely defined. The
only requirement on the potentials is that their derivatives reproduce the fields via
equations (3.3) and (3.5). More precisely, from (3.3) it is clear that B will be unchanged
if an arbitrary gradient of a scalar function is added to A:

A— A=A+ VA (3.8)
For the electric field to be unchanged under this transformation, Equation (3.5) implies
that V' must be modified according to

oA
/ f— _
VoVi=V- (3.9)
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We can exploit this arbitrariness by choosing the potentials in such a way that the
equations (3.6) and (3.7) relating the potentials to the charges and currents take simple
forms. One option (and the one we will be interested in here) is to choose the potentials
such that the term in brackets in (3.7) vanishes:

10V
V-A=———, 3.10
c? ot ( )
a requirement known as the Lorentz condition. When this condition is met Equa-
tions (3.6) and (3.7) become a pair of symmetrical inhomogeneous wave equations:

1 0%V 1
1 0%A

The quantities on the right in equation (3.11) involve the charges and currents which
generate the potentials. They are known as the source terms. When the source terms
are zero the equations are called homogeneous wave equations.

For the case of static fields (0/9t = 0), Equations (3.11) become Poisson’s equation,
and have the solutions:

V(r,) = ! /&dﬂ (3.12a)

47eg T
Ar,) = Z—;/@dr (3.12b)

The notation in these solutions is explained in Figure 3.1. A source containing charges
and currents generates potentials which are measured by some observer. There are three
vectors involved. The vector r, is the position vector of the observer while ry is the
position vector of the source. The vector r points from the source to the observer, and
hence r = |r, — rg|. The integrals in equations (3.12) are volume integrals over points
in the source, and the notation dr has been chosen for a differential volume element in
the source.

Source

dr Observer

Origin

Figure 3.1: Illustration of source and observer coordinates for the solution to the Poisson
equation.

3.2 Retarded potentials

What happens when the charges and currents vary with time? Equations (3.11) are
wave equations with a wave speed ¢, and demonstrate that electromagnetic influences
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propagate at the speed of light. If the charges and currents vary very slowly (with
respect to c¢), then Equations (3.12) provide a reasonable approximate solution. If not,
then a solution to Equations (3.11) — the d’Alembert equation — is required.

It is possible to guess the solution. Because electromagnetic influences propagate at
the speed ¢, the potential at some given position and time should reflect the behaviour
of remote charges and currents at an earlier time. Looking at Figure 3.1, the time for
the sources should be adjusted to become ¢, =t — r/c. This time is called the retarded
time, and with this we identify the time-dependent solutions:

V(ro,t) L/Mm (3.13)

T e

.
and 3 )
_ Mo T, tr

Alr,,1) = 10 / 1) g (3.14)

3.3 Dipole radiation

As an illustration we will apply (3.13) and (3.14) to derive the potentials and hence
fields for an oscillating electric dipole, and show that the dipole radiates. The exact
form of the dipole is somewhat artificial, to make the derivation easier, but the final
results are independent of the details. We consider two small charged spheres connected
by a wire of length s. The wire is taken to lie along the z axis with its centre at the
origin. The system is electrically neutral, so that the charges on the spheres at time
t are q(t) and —q(t). Suppose that we somehow arrange to drive the charge back and
forth through the wire at a frequency w:

q(t) = qo cos wt. (3.15)

This arrangement constitutes an oscillating electric dipole. The dipole moment p(t) is
a vector with magnitude equal to the charge times the charge separation, and with a
direction pointing from the negative to the positive charge. Hence we have

p(t) = q(t)sz = po coswt z, (3.16)

where pg = gos is the maximum value of the dipole moment.
The retarded potential at an observer is, according to (3.13),

1 [gocosw(t—ry/c) qocosw(t—r_/c)

V(ro,t) : (3.17)

 4reg Ty r_

where 7, and r_ denote the distances from the observer to the charges, as shown in
Figure 3.2. According to the cosine rule,

ry = [r2 Froscosf + (s/2)°] vz

(3.18)
In classical electromagnetism a distinction is made between a physical dipole, which
has a finite separation, and an ideal dipole, where the separation is zero but there is a
finite dipole moment. Assuming that we are dealing with an ideal dipole a number of
approximations can be made, which allow the physics in (3.17) to be seen.
To obtain the limit of an ideal dipole we consider a small separation, s < 7.
Expanding (3.18) to first order in s using the Binomial theorem gives

o

re =7, (1 T 2i cos 9) (3.19)
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z observer

PO (O o

v —qt) ¢

Figure 3.2: Dipole radiator.

and ) )
s
—=—11% 0). 2
T+ T < 2r, o8 ) (3.20)
Using (3.19) we have
ws
cosw(t—ry/c) = cos {w(t —ro/c) £ 5 cos@}
c

ws
)
cosw(t —ry/c) cos 5, €0
. . (WS
F sinw(t —7,/c)sin (2— cos@) . (3.21)
c
We also make the assumption that the frequency of oscillation is not very large:
c
W< -, (3.22)
s

Since associated waves would have a wavelength A = 27¢/w, this is equivalent to the
assumption that A > s. With this assumption we can use the small angle approximation
in (3.21), to give

cosw(t — 11 /c) = cosw(t — 1o/c) F g cosOsinw(t — r,/c). (3.23)

Substituting the approximate expressions (3.20) and (3.23) into (3.17) gives

pocosf | 1 w .
— t—r, - — t—r, . 3.24
pr cosw(t —ry/c) p sinw(t —r,/c) ( )

V(Toa 0, t) =

If there is no oscillation of charge (w — 0), then (3.24) becomes

_ pocosf

= 3.25
dmegr?’ ( )

which is the potential for a static dipole. When there is time variation, there are two
terms in (3.24) contributing to the potential. At large distances the first term varies
like 72, whereas the second term varies like 7 '. Hence the second term falls off more



CHAPTER 3. ELECTROMAGNETIC RADIATION I 31

slowly, and at a significant distance from the source this term will dominate. More
formally, we are interested in fields which survive in the radiation zone, i.e. where

C
o ) 326
ro > " ( )

which is equivalent to the requirement that r, > \. In the radiation zone the potential
takes the simple form

Voo, =~ (220

4dmege To

) sinw(t —r,/c). (3.27)

Next consider the vector potential A(ro,t), which is dependent on the current I(t)
flowing in the wire:

d
I(t) =Y = _gwsinwt. (3.28)
dt
From (3.14) we have
po [/ —gowsinw(t —r/c)
A(r,,t) = —/ zdz. (3.29)
47 —5/2 r

The integration in (3.29) effectively introduces a factor of s, and so to first order in
s/, we can replace the integration by s times the integrand evaluated at the origin,
where r = r,:

A(r,,0,t) = _ Hobot sinw(t — r,/c)Z. (3.30)
4rr,

In spherical coordinates this expression has two components, since
Z = cos OF — sin 6. (3.31)

From the potentials it is straightforward to calculate the fields, using (3.3) and (3.5).
Only terms important in the radiation zone (i.e. that decay like r,!) are kept. The
details are left as an exercise, but the results are:

2 ind -
B(r,,0,t) = — 1P <Sm ) cosw(t —r,/c) d (3.32)
4me To
and 2 /iin
E(r,,0,t) = _NOZOW (sm > cosw(t —ry/c) 0. (3.33)
T To

Equations (3.32) and (3.33) define waves of frequency w travelling radially outwards at
the speed of light. The electric and magnetic fields are in phase, mutually perpendicular
and transverse, with a ratio of amplitudes Ey/By = c¢. This is the same as for plane
electromagnetic waves in free space. However, the amplitudes of the dipole radiation
waves decay like 7,1, because these are spherical waves, not plane waves. A wavefront
instantaneously defines a sphere and not a plane.

The energy flux in the travelling waves is determined by the Poynting vector S =
(E x B)/up. Using (3.32) and (3.33) gives

g_ Ho [p0w2 (sin6‘

c 47

) cosw(t — T4 /c)] s (3.34)

o

The Poynting vector gives the instantaneous flux of energy in the wavefront. To an
observer measuring that flux, the relevant quantity is the time average of the flux.
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Denoting the time average by angled brackets and recognising that the average of cos? x
over many cycles is 5, we have

24N ain2
(S) = (Mopow ) sin 9?' (3.35)

3272c r2

1
29

Equation (3.35) demonstrates that there is no power radiated along the axis of the
dipole (6 = 0). The maximum flux occurs at § = 7/2, i.e. at right angles to the dipole.

There is an interesting consequence of the result (3.35): the strong dependence
of radiated power on frequency (~ w*) accounts for the blue colour of the sky. As
sunlight passes through the atmosphere it causes atoms in molecules in the atmosphere
to oscillate, and the molecules behave as small dipole radiators. They emit more strongly
when driven at higher frequencies, and so the energy absorbed and reradiated by the
atmospheric dipoles is stronger for the blue component of sunlight. The dipoles oscillate
in a direction perpendicular to the Sun’s rays, which also means that if you look in a
direction in the sky at right angles to the Sun, the radiation you receive is polarised in
a direction perpendicular to the line from the point you are looking at to the Sun. This
can be confirmed with a polarising filter.

Recent colour pictures from Mars Pathfinder demonstrate that the sky on Mars
is not blue but rather an orange colour, confirming a result from the 1970s Viking
landers. The atmosphere of Mars is thin and dusty, and atmospheric light scattering
is dominated not by molecules of gas (in the case of Mars, the atmosphere is mostly
carbon dioxide) but by suspended dust particles. These particles are larger than the
wavelengths of visible light, and they are reddened by iron oxide, like the Martian soil.
The power spectrum of the scattered light in this case is not dictated by the dipole
radiation formula but by the wavelengths which are reflected from the suspended dust.

3.4 Radiation from a moving point charge

3.4.1 Potentials due to a moving point charge

We have derived the potentials and fields produced by the movement of charge in an
oscillating dipole. What about the potentials and fields due to a single charge with
a specified trajectory? The potentials in this case are the famous Liénard-Wiechert
potentials. The treatment given here follows Griffiths, and is not completely rigorous.

Suppose the trajectory is described by the position vector w(t). Figure 3.4 illustrates
the path of a particle, and the position vector of the particle w(¢,) and the vector
r = r, — w(t,) for the retarded time ¢, corresponding to a time t. The vector w(¢,)
is the retarded position of the particle. The retarded time is implicitly defined by the
equation

r=Iro —wit,)| = et —t,). (3.36)

A quick examination of formula (3.13), i.e.

V(ro,t) = 47360 / P (rs’tr_ /) g (3.37)

might lead you to expect that the retarded potential of a point charge is

_ L oq
T dweg 1

(3.38)

with the understanding that the distance r is the distance from the observer to the charge
at the retarded time. However, this is wrong, for a subtle reason. The denominator r
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w(t,) r

observer
origin

Figure 3.3: Geometry of retarded position.

can be taken outside the integral, but the remaining integral,

/p(rs, t—|r, —rs|/c)dr (3.39)

is not the charge of the particle. The reason is that to obtain the charge you need to
integrate over the charge distribution at a fixed instant in time, but in this case the
charge distribution at different source points is evaluated at different times, owing to
the dependence of the retarded time on the source coordinate. It might be expected
that this problem goes away for a point particle, but it does not. To see why, consider
the following analogy.

If we observe a moving object, its dimensions in a direction parallel to our line of sight
appear altered, because the light from different parts of the object take different times
to reach us. This effect is classical — this is not relativistic contraction (in treatments
of relativistic contraction this effect is actually removed by specifying that the length
of an object is measured by simultaneously determining the positions of the endpoints
of the object in the given frame of reference). Consider the motion of a rod of actual
length L, as shown in Figure 3.4. We take 0 to be the angle between the velocity of
the rod and a unit vector T pointing from the rod to the observer (we assume the rod
is far enough away that rays from the ends of the object can be assumed parallel). The
observed length of the object is L'. To relate this to L, note that photons from the
rear of the object have to cover an extra distance L’ cosf. Hence they must have left a
time At = L' cosf/c earlier. In that time the rod has moved a distance L' — L = vAt.
Solving this equation for L’ gives

L L

L= (1 —wvcosf/c) - (1-7-v/c) (340)

Since there is no motion in the direction of the thickness of the rod, the observed
thickness is the actual thickness. It follows that the observed volume 7’ is related to
the true volume 7 by the same factor:

, T
T = 3.41
(1-7-v/e) (341)
Note that the correction factor does not depend on the size of the object. Hence it must
also apply for a point object, i.e. a particle.
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Ll

Figure 3.4: Geometry for understanding the factor in the Liénard-Wiechert potentials.

This situation is analogous to the problem at hand, namely evaluating (3.39). The
effective volume of the charge is modified by the factor identified above, because for
each point in the source we are putting in the charge density for an earlier time, namely
the retarded time for the source point. The effect of this is to alter the apparent charge:

/p(rs,t—|r0—rs|/c)d72ﬁ, (3.42)

where v is the velocity at the retarded time, and r is the vector from the retarded
position to the point of observation r,.
The equation for the electric potential then becomes:

1 q

V 0 t) = = . 3.43
(xo ) dweg (1 —=T-v/c) (343)

Similarly the vector potential is
Ao, t) =20 T _ Yy, 1) (3.44)

S 4xr(l-7-v/c) 2

Equations (3.43) and (3.44) are the Liénard-Wiechert potentials for a moving charge.
We can use these equations to calculate the potentials from charges moving in pre-
scribed ways, and then use equations (3.3) and (3.5) to calculate the fields.

3.4.2 Fields due to a moving point charge

The field from a moving point charge was derived in PHYS202 from relativistic argu-
ments. It is also possible to derive these fields from the potentials (3.43) and (3.44)
obtained above. We will not go through the derivation — it can be found in Griffiths,
and in other books on electromagnetism — but will state the results. The derivation re-
quires some care, because the derivatives in (3.3) and (3.5) are performed with respect
to the observer’s coordinates.

The results are that the fields are given by

E(ro,t) = 4:60 & .’”u)3 (= v®)u+rx (uxa) (3.45)
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and 1
B(r,,t) = -T X E, (3.46)

c
where we have introduced the vector

u=cr-v. (3.47)

In these equations v and a are the velocity and acceleration of the particle at the
retarded time, and r is the vector from the retarded position of the particle to the
observer.

The first term in equation (3.45) falls off as #~2. This can be seen by noting the
in the numerator and the 73 in the denominator. If v = a = 0 only this term survives,
and the field reduces to the Coulomb field

1 q..
= —=T.
47eq r?

(3.48)

For this reason this term is referred to as the generalised Coulomb field, or velocity field
(because it does not depend on the acceleration). The second term is the acceleration
field, which falls off as 7—!, and hence is dominant at large distances. This term makes
up the radiation field.

3.4.3 Fields from particles with constant v

While equations (3.45) and (3.46) give the fields it is not easy, by looking at these
equations, to see what these fields are like (especially in the case of E), and it is useful
to reduce the expressions in a simple case. We will consider the case of a particle moving
with a constant velocity v.

Assuming the particle is at the origin at time ¢ = 0, we have the trajectory

w = vt. (3.49)

To obtain the retarded time, we need to solve (3.36) for this choice of trajectory, i.e. we
need to solve
[ro — vi,.| = c(t —t,). (3.50)

Squaring both sides gives a quadratic in ¢,, which can be solved using the quadratic
fomula, to give:

=1y v (P =1y V)2 4 (2 = 0?2 = )]V
b= A : (3.51)

When v = 0 this reduces to ¢, = t &+ r,/c, which indicates that the minus sign is the
correct choice.
Now we turn to the expressions for the fields. Setting a = 0 in (3.45) gives

q (=)

4mep (r-u)3 e (3:52)

The general procedure is to reduce the right hand side to a form that depends only
on the observer’s position rg, the present time ¢, and the velocity v. In particular this
involves using (3.51) to replace the retarded time.

First consider the term ru:

ra = Cr-—rv

= c(ry —vt,) —c(t —t)v, (3.53)
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using the definition of u and (3.36). Hence
ru = ¢(r, — vt). (3.54)

Next consider the term

r-u = cr(l—u)
c

= t—r,-v—t.(? —0v?), (3.55)
where we have used (3.36). Replacing the ¢, term using (3.51) gives
r-u=[(*t—r, v)’+ (* =) (r] — t7)] vz (3.56)
Introducing the vector from the present position of the particle to the observer,
R=r,— vt (3.57)
it is straightforward to show that (3.56) can be rewritten
2 1/2
r-u_cRP—igﬁfﬁ} , (3.58)

where 6 is the angle between R and v. Figure 3.5 illustrates these definitions.

E

observer

Origin Present position

Figure 3.5: Diagram of the quantities involved in equation (3.59)

Substituting the expressions (3.54) and (3.56) into (3.52) gives

R 1—v%/c?
_ 4 — ( /¢) 572 (3.59)
dmeo R [1— (v/c)?sin® 0]
The magnetic field is obtained from (3.46). Noting that

~ ro — Vtr
T -

(r, i vt) + v(t —t,)

R
= =43 (3.60)
T C
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we have that 1 1

Equations (3.59) and (3.61) are the expressions we are after. There is a strange
aspect to these answers: Equation (3.59) indicates that E is in the direction of R,
and so points away from the present position of the particle, even though the field is
generated by the retarded potential. Evidently the field ‘predicts’ the future position of
the particlel However it should be noted that if the velocity had changed during the
time between ¢, and ¢, the field (at large distance) would point away from the position
where the charge actually ends up: there is nothing prescient about the field.

Equation (3.59) differs from the Coulomb formula for the field due to a stationary
charge by the factors in the numerator and denominator. The angular dependence of the
field is determined by the sin®# term in the denominator. Clearly the field is strongest
for = /2, i.e. at right angles to the motion of the particle: the field lines ‘bunch up’
in this direction. Figure 3.6 illustrates the electric field of the particle.

E

retarded position

Figure 3.6: Electric field of a particle moving with a constant velocity.



CHAPTER 3. ELECTROMAGNETIC RADIATION I 38

Problem Set 3

1. Fill in the steps in the derivations of (3.6) and (3.7).

2. Derive the dipole radiation fields (3.32) and (3.33) from the potentials (3.27)
and (3.30).

3. Show that the total power radiated by an oscillating dipole is independent of
distance from the dipole.

4. Establish (3.58) from (3.56)

5. What does the magnetic field due to a charge in motion with a uniform velocity
look like?

6. Suppose that a point charge moves along the x axis with a constant speed v. Show
that the fields at points to the right of the charge are given by

q c+uv\ o
E= B=0
4meqr? (c—v) . ’

where (as defined in the notes) r is the vector from the retarded position of the
charge to the observation point. What are the fields to the left of the charge ?




Chapter 4

Electromagnetic Radiation 11

References: Griffiths, Rybicki and Lightman

4.1 The Larmor formula

4.1.1 Power radiated by a point charge

We have an expression for the acceleration part of the electric field produced by a point
charge [the second term in (3.45)]:

q

Era = o 7 =
47 dre (r-u)3

[r x (uxa), (4.1)
where r is the vector from the retarded position of the source to the observer, a is the
acceleration of the charge at the retarded time and u = ¢r — v, where v is the velocity
at the retarded time.

The energy flux associated with the fields of a point charge is given by the Poynting
vector,

S:i(ExB) - ﬁ[Ex(?xE)]
- L FEr-BE B, (42)
HocC

using (3.46). We wish to determine the power radiated by the point charge. This
is obtained by integrating (4.2) over a sphere centred on the retarded position of the
particle, with radius r. In doing this integration there are contributions from both
the acceleration and velocity fields of the point charge. However, as established in the
previous chapter, the velocity field falls off like 7—2, and so the resulting contribution
to the Poynting vector falls off like r=%. Integrating over a sphere of radius r, the
resulting contribution to the power decays like 7~2, and hence there is no power radiated
to infinity from the velocity field. This is not the case with the acceleration field,
Equation (4.1). This field decays like r—!, the associated Poynting flux decays like r~2,
and the total power radiated is independent of distance. Hence the acceleration field
radiates power to infinity, which is why it is called the radiation field. A charge must
accelerate to radiate energy to infinity. As a result we restrict our attention to the
acceleration field, and the Poynting vector simplifies to

Siad = — F2 4T (4.3)

1
o€
39
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Next we assume that the charge is at rest at the retarded time, so that v = 0 (but
a # 0). (The results obtained below turn out to be a good approximation provided
v K ¢, but a relativistic correction is needed for fast particles, as discussed in Chapter 5.)
With this assumption u = ¢r, and we have

[N
Erad = 471'6002 ; [I‘ X (I‘ X a)]
qg 1 _ ..
= Tre®r [f(r-a)—a]. (4.4)
Using (4.3) the Poynting flux is then
1 q > a2sin?6

Sirad = — , 4.5
47 e (47T6002) z (45)

where 6 is the angle between T and a. Equation (4.5) indicates that no radiation
is emitted in the forward or backward direction, but all emission occurs in a donut
about the direction of instantaneous acceleration, as shown in Figure 4.1. The angular
ditribution of radiation is the same as was found for the oscillating dipole (because the
dipole consists of charges accelerating back and forth in the direction of the dipole).

\

QD

Figure 4.1: Angular distribution of radiative flux from an accelerating charge.

We can rewrite (4.5) in a way that will be useful in later discussions. By noting that
the power emitted into a solid angle d2 in the direction T is dP = S;aqr2dS2, we have
the expression for the power emitted per unit solid angle:

dpP q?a?sin? 6

—_— = 4.6
d§2 1672¢qc3 (4.6)
The total power radiated is obtained by integrating over all solid angles:
dP 1 2q¢%a?
P=[ —d)=—-—. 4.7
/ dQ) 4dmeg 3 3 (4.7)

This expression is the Larmor formula.
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4.1.2 A graphical explanation of the acceleration field

There is an informative graphical explanation for the radiation field from a point charge,
due originally to J.J. Thomson. Consider a charge that has been in motion with a
constant velocity along the x axis, and then decelerates to rest at position zy at time
to. The deceleration is assumed to take a short time At. What does the electric field
produced by the particle look like at time t; > t(? Figure 4.2 is a schematic of the field
structure. Beyond a distance r = ¢(t1 — to + At) from the charge, the field cannot know
that the particle has stopped. Hence the field structure outside this radius must be
that of a charge in uniform motion, viz. Figure 3.6. Note that this field has field lines
radiating from the point x;, which is where the particle would have been if it had not
stopped [see discussion following Equation (3.61)]. Close to the particle the field lines
must be those of the Coulomb field. In between is an annular region with thickness cAt
corresponding to the time when the particle was decelerating. The Maxwell equation
V -E = 0 (for space in the absence of free charge) requires that the electric field
lines of the two regions must join up, and so the field in the annular region must look
something like that shown in Figure 4.2. The radial width of the annular region is
fixed: the inner and outer radii propagate out at the speed of light. In between is the
radiation or acceleration field. Figure 4.2 reproduces many of the important features
of the acceleration field. For example, there are no kinks in the field lines along the
2 axis. This corresponds to the fact that there is no radiation along the direction of
acceleration of the particle. The number of field lines in the annular region is fixed. The
field lines inside this region are packed more closely than the radial fields outside, which
corresponds to the 7~ ! decline of the radiation field. More precisely, it is apparent that
the field lines depart from the radial direction in the annular region. This amounts to
the addition of a component of field perpendicular to the radial direction, that we will
call B;. We can estimate B as follows. Assume the annular region has (constant)
width Ar, and that there are N field lines passing through the annulus in the plane
shown in Figure 4.2. Then the inclination of the field lines to the radial direction in the
annular region is given by tanf ~ (27r/N)/Ar. Noting that B) /By = tanf and that
By ~ r72, it follows that B; ~ r~!, and hence the radiation field decays like r~*.

\/

Figure 4.2: Graphical explanation of the radiation field.
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4.1.3 Radiation from a group of charges - the dipole approxi-
mation

So far we have focused on a the radiation produced by an oscillating dipole, and by a
single accelerating charge. What about an arbitrary collection of charges? Clearly we
can always just add up (4.4) for each charge:

1 Gi o o~
E,q = Tre? Z - [F; % (F; x a;)], (4.8)

where the subscripts ¢ denote quantities associated with each charge. Provided the
charges are close together (with respect to the distance to the observer), it is reasonable
to assume that the distance to the charges at the retarded time can be assumed to be
the same for all charges, say ro, with an associated position vector n. In that case we
can write

nx (nxp)

Erad = (4.9)

47T607‘0 C2

where

p= Zqiri (4.10)

is the net dipole moment of the collection of charges. Equation (4.9) is the dipole ap-
prozimation (for a more careful justification of the approximation involved, see Rybicki
and Lightman). Similarly (4.7) has the counterpart in the dipole approximation:

1 242
= 47‘(6055' (411)

It is possible to rewrite these formulae in a useful alternative way. First consider
the magnitude of the electric field E,,q(t) due to the radiation field at a given point in
space. The Fourier transform of this quantity is

T[> :
Emd(w):% / Eraa(t)e™tdt. (4.12)

Because the radiation field consists of transverse electromagnetic waves, the magnitude
of the Poynting vector is Syaa = €ocEZ 4 (see Problem Set 4). Recognising this as the
energy per unit area and per unit time in the radiated field we can integrate over all
time,

aw b

1 = c / EZ (t)dt, (4.13)
to obtain the total energy radiated per unit area. Parseval’s theorem for the Fourier
transform of a real quantity:

oo

/ E2%  (t)dt = 4m / | Braa (w)|?dw (4.14)
s 0

allows us to rewrite (4.13) as

aw o~
A= 47Teoc/0 | Eraa (w)]?dw, (4.15)

or

aw

_ i 2
T 4meoc|Eraa(w)|”. (4.16)
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Next we introduce the dipole approximation. From (4.9) we have

psinf
Fipa = —7, 4.17
ad 4megc3rg ( )
where 6 is the angle between n and p. Taking the Fourier transform we have
~ —w?psinf
E.. = 4.18
d ((.«)) 47‘1’60027‘0 ( )
and inserting this in (4.16) gives
dW 1 wp?sin?@
vy sn (4.19)

dAdw ~ Ameq 12

Next note that the differential area into which the energy is radiated is related to solid
angle by dA = 73d(2, and hence

dW 1 wip?sin?@

= 4.20
dwdQ)  4meg c3 ( )

Integrating over solid angle leads to the total energy radiated per unit frequency,

aw 2 wip?
do 3¢ 3

(4.21)

4.2 Thomson Scattering

As an application of the theory developed above, consider the process in which a free
electron oscillates in response to the passage of a plane electromagnetic wave. We as-
sume the incident electromagnetic wave has angular frequency w and propagates along
the x axis, with the electric field in the z direction. The electron is assume to have an
equilibrium position at the origin. The electric field at the origin due to the electro-

magnetic wave is
E = E,sinwtz. (4.22)

The acceleration of the electron is then a = —eE/m, and using (4.5) the Poynting flux
of the radiation produced by the electron is

e'E2  sin?0 .,
sin

Srad = wth, (4.23)

16m2egm?2c3 12
where 1 is the vector describing the direction of the radiation, and n -z = cosf. The
time averaged power radiated per unit solid angle is given by

P,
m =T <Srad>7 (424)

where (...) denotes the time average. Recalling that the time average of sin® z is % we
have
apP B2
dQ  32n2egm?2c3

Next we introduce the differential cross section do/dQ2 according to

sin? 6. (4.25)

AP _do

=T (4.26)
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where F is the time average flux in the electromagnetic wave incident on the electron
at the origin. The differential cross section describes the probability for scattering in

a given direction. Because the incident wave is a plane electromagnetic wave, we have
F = 1eocE] (see Problem set 4), and

do .
o ra sin? 6, (4.27)
where
_ 4.28
o= dregme?’ (4.28)

The quantity rq is called the classical radius of the electron, and has the value rg =
2.82 x 10711 m. Equations (4.27) and (4.28) describe Thomson scattering or electron
scattering. The total cross section for scattering is obtained by integrating (4.27) over
solid angle: ;
o i
or = /EdQ = %T(Q). (4.29)
This quantity is called the Thomson cross section, and has a value o = 6.65 x 10729 m?.

Following our previous findings, the scattered radiation is linearly polarised in the
xz plane.

The results obtained above are valid for a plane polarised incident electromagnetic
wave. What if the incident wave is unpolarised? In that case we can assume without
loss of generality that the incident unpolarised wave is propagating in the x direction
and that scattering occurs in the xz plane. It is possible to decompose the electric field
of the incident wave into components parallel to the z and y axes, E = E,y + E.Z. The
component E.Z is at an angle 6 to the scattering direction, and the component E,y
is at an angle 5 to the scattering direction. The differential cross section is then the
average of the contributions for scattering of linearly polarised radiation through angles
0 and 5:

do 15 9
— = — 1 0). 4.
<dQ) - 570 (1+sin*0) (4.30)

There is an interesting distinction between our current results and a result found in
Chapter 3. In the present context we find that Thomson scattering is independent of
frequency: Equation (4.24) does not depend on w. In Chapter 3, however, we investi-
gated radiation from an oscillating dipole and found that there is a strong dependence
of radiated power on frequency, according to Equation (3.35). This result was stated to
be physically very important: for example it explains the blue colour of the sky. The
resolution of this difference in behaviour is that in the oscillating dipole of Chapter 3
the amplitude of oscillation of the particles producing the radiation was fixed. Hence a
higher frequency implied a greater acceleration, and according to (4.7) a greater power
output. In the present context the electron producing the scattering oscillates freely in
response to an incident wave. If the incident wave has a high frequency the amplitude
of oscillation will be smaller, and the acceleration is independent of frequency. Hence
the emitted power is also independent of frequency, according to (4.7). The two kinds
of behaviour may be related by considering scattering by a harmonic oscillator, i.e. a
particle assumed to be bound to a centre of force and driven by an incident wave with
a frequency w. At high frequencies of the incident wave the cross section for scattering
approaches the Thomson value op, because the energy associated with the incident
wave is much greater than the ‘binding energy’ of the system, and the particle is nearly
free. At low frequencies the cross section behaves according to

o(w) — o (i>4, (4.31)

wo
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where wg is the natural frequency of oscillation of the system. This regime is called
Rayleigh scattering, and reproduces the ~ w* behaviour found earlier. In this case the
incident wave is perturbing a bound particle. Rayleigh scattering is appropriate to
describe scattering of sunlight by atmospheric dipoles, since the charges in the atmo-
spheric dipoles are bound within molecules. (For a more complete of scattering by a
harmonic oscillator, the reader is referred to Rybicki and Lightman.)

An astrophysical example of Thomson scattering is the appearance of the K corona
of the Sun. During solar eclipses the corona — the tenous hot outer atmosphere of the
Sun — is visible in white light up to several solar radii away from the limb of the Sun.
One component of the observed light comes from Thomson scattering of solar radiation
into the line of sight by coronal electrons. The ‘K’ in the name stems from the German
word for continuum: the observed light does not carry the characteristic absorption lines
of the solar spectrum (the Fraunhofer lines). Thomson scattering produces emission at
the same frequency as the incident radiation, and so it will mimic the source spectrum
if the scattering charges are at rest. However, the corona is hot (T ~ 2 x 10°K),
and so the absorption lines are smeared out by the Doppler shifts introduced by the
random velocity component of the electron along the line of sight. Another component
of the coronal emission is produced by scattering from dust particles: the F corona.
This component does show the Fraunhofer lines (hence the F in the name), because
the dust is slowly moving. Returning to the K corona, the theory developed above
suggests that it will be polarised perpendicular to the radial direction to the Sun, and
this is confirmed by observation. The intensity of the observed emission provides a
measure of the coronal electron number density, as shown in the Problem Set for this
week. The observed structures in the K corona trace magnetic field lines leading out
into interplanetary space.
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Problem Set 4

1. An electron is dropped close to the Earth’s surface and falls under the force of
gravity alone. What fraction of the potential energy loss in the first second is
radiated? (Assume a = g and PE = mgh.)

2. Light with initial flux Fj passes through a region in which there are n scatterers
per unit volume with scattering cross section o. Show that after travelling a
distance z the flux is

F(z) = Fpe ™%

As discussed in the notes, the K corona is sunlight scattered by free electrons.
The apparent brightness of the K corona at one solar radius from the sun’s limb
is about 107® that of the Sun’s disc. Estimate the free electron density near the
Sun.

3. Show that for a plane monochromatic electromagnetic wave with electric field
E(t) = Epsin(wt — kz)z

the Poynting vector is R
S = ¢ocE(t)*x.

What is the time average of the Poynting vector?



Chapter 5

Electromagnetic Radiation I1I

References: Griffiths, Rybicki and Lightman

Frequently in astrophysics we encounter radiation from relativistic particles, i.e. par-
ticles with a velocity that is significant relative to c¢. In this chapter we consider the
electrodynamics of radiation by relativistic particles. Specifically, we consider the mag-
nitude of the power radiated and the direction in which power is radiated. We begin
with a review of some results from relativity.

In the following we use the standard notation for the Lorentz factor:

v(v) = (1 - f>1/2. (5.1)

c2

5.1 Relativistic transformations

5.1.1 Lorentz transformation

Consider a frame K and a second frame K’ moving with velocity v with respect to K,
in the x direction. The constancy of the speed of light in both frames requires that
coordinates in the two frames are related by the Lorentz transformation:

' =y(x — vt) (5.2a)
y =y (5.2b)
2=z (5.2¢)

t' = ~(t —vx/c?), (5.2d)

where v = y(v). Note that coordinates transverse to the relative motion of the two
frames are unaffected. The inverse transformation (i.e. the unprimed coordinates in
terms of the primed coordinates) is obtained by replacing v by —v in Equations (5.2).

5.1.2 Transformation of velocity

Suppose that a particle moves with a velocity u’ as measured in K’. What is the velocity
of the particle in K7 The answer involves a simple application of (5.2):
dr y(da’ + vdt') ul, + v

L= - . 5.3
" dt  v(dt' +vda'/c?) 1+ wvul/c? (53)

47
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Similarly for the other components of u:

u; u'
_ =Y 5.4
WS AT e @) T AT el ) 54

These results may be rewritten in terms of the components of velocity parallel and
perpendicular to the direction of the relative motion between the two frames:

| + v /

I Uy

_ _ , 5.5
YT vuil/c27 b (1 4 vuj/c?) (55)

How does the direction of the motion change between frames? Introduce the angle
0 = tan"'(uy/u|) as shown in Figure 5.1. Using the transformation (5.5) it follows
that ' in @
u'sin
tanf = — 5.6
an ~v(u' cos 0 +v)’ (56)

which is called the aberration formula. If v’ = ¢ then Equation (5.6) becomes
sin ¢’

and also
cosb' +v/c
14 (v/c)cos®'”

Equations (5.7) and (5.8) describe the aberration of light.

cosf = (5.8)

Yy K y/ K/

N4

X ;C'

Figure 5.1: Transformation of direction of motion.
For the particular case that " = 7, it follows that
sinf =yt (5.9)

If ~y is large then sin # and hence 6 will be small:

(v ). (5.10)

0 ~~
This result has important implications for the direction of emission of radiation from
relativitic particles. Assume that K’ is the rest frame of a particle moving with a
speed v =~ ¢ with respect to an observer in K. Assume the particle emits radiation
isotropically. Photons emitted in the direction #’ = T travel in the direction 6 ~ ~~*

in K. One half of the photons emitted in K’ trave21 in the directions [0| < F. All
of these photons travel in the narrow range of directions |§| < v~! in the frame K.
Hence radiation is concentrated in the direction of motion of the particle in K: very few
photons are emitted with |§] > v~1. This effect is known as beaming, and is illustrated

in Figure 5.2.
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K’ K

Figure 5.2: Relativistic beaming of radiation emitted isotropically in the rest frame K’.

5.1.3 Transformation of acceleration

It will also be useful to have at hand a result for the transformation of acceleration
between reference frames. Noting that a, = du,/dt it is straightforward to use (5.3),
(5.4) and (5.2) to establish the transformation rules for acceleration. The results are
more complicated than those for velocity, and we will only write down a special case that

we will use shortly: when K’ is instantaneously a rest frame, so that u}, = uj = u = 0.
In that case
ay =v"°al,, ay=~""a, and a.=~v""d.. (5.11)

In terms of motion parallel and perpendicular to the relative velocity between the frames,

aj =~%ay and a| =~%ay. (5.12)

5.1.4 Doppler effect

Suppose a clock at rest in K’ measures a time interval 7" = ¢}, — t{. The corresponding
time interval in K is, according to (5.2)

thg—tl :’y(tIQ —tll) Z’}/TI, (513)

which illustrates time dilation. Since v > 1, periodic phenomena in K’ have a longer
period in K.

Time dilation is not dependent on (and does not include) the effects of the propa-
gation time of light to an observer. Consider a source moving with a velocity v in an
observer’s rest frame. Suppose the source emits with a frequency w’ in its own rest
frame. What will be the frequency of the source to a distant observer in K, measured
on the basis of the arrival time of pulses? Figure 5.3 illustrates the problem.

We assume the source moves from position 1 to position 2 and emits one period of
radiation in that time. The time taken to move from 1 to 2 is, according to the distant

observer,

2w

using (5.13). The difference in arrival times of the photons from 1 and 2 is A¢ minus
the additional time for the photon from 1 to reach the observer:

Ata=At—d/c= At (1—%cost9). (5.15)
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to observer

Figure 5.3: Geometry for Doppler effect.

The inferred frequency is then

27 W'
N v[1 = (v/c)cosb]’ (5.16)

which is the relativistic Doppler formula. The factor « is the relativistic part of this
formula: the factor 1 — (v/c) cosf appears in the classical version as well, since it arises
from a purely geometric consideration.

5.1.5 Transformation of energy and momentum

In special relativity the energy and momentum of a particle with velocity u in the frame
K are given by
E =~(u)moc® and p = y(u)mou, (5.17)

so in the frame K’ we have
E' =~(u)Ymoc® and p’ =~(u)moeu’. (5.18)

It is straightforward to use the transformations established above to rewrite (5.18) as

E' =~(E — vp,), (5.19a)
Py =(pe —vE/), (5.19b)
Py = Py, (5.19¢)
and
Pl = D= (5.19d)

Also recall that for a photon the relativistic energy and momentum are related by
E = pc.

5.2 Radiation from fast moving charges

5.2.1 Generalising the Larmor formula

We are now in a position to establish detailed results for radiation by relativistic parti-
cles. Before proceeding it is useful to recall the approximation made in Chapter 4 which
results in some of the formulae there being nonrelativistic.
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Once again the expression for the acceleration field produced by a point charge is

q r
4meg (r-u)3

Eiad = [r x (uxa), (5.20)
where r is the vector from the retarded position of the source to the observer, a is the
acceleration of the charge at the retarded time and u = ¢r — v, where v is the velocity
at the retarded time. ' In Chapter 4 we evaluated the associated Poynting flux,

1
E2 T (5.21)

Srad =
o€

by making the assumption that the charge was at rest at the retarded time, so that
v =0, and u = cr. This is a reasonable approximation provided v < ¢, but is strictly
invalid for relativistic particles. The result was the Larmor formula.

Although we cannot assume v = 0 for all times, it is always possible to transform
into a frame K’ in which the particle is instantaneously at rest. The particle does not
remain at rest in this frame because it is accelerating, but for infinitesimal neighbouring
times the particle is moving nonrelativistically, and so we can calculate the radiation
emitted in the frame K’ at the chosen instant using the Larmor formula, and then
transform back to an observer’s frame K.

Suppose that a total amount of energy dW’ is emitted in the instantaneous rest
frame K’ in a time dt’. If we assume that the particle emits symmetrically in K’, then
total momentum of this radiation is zero, dp’ = 0. Using the transformation of energy
relation (5.19a), we can obtain the total energy emitted in the frame K:

dW = ~dW'. (5.22)
Also we have from the time dilation formula dt = ~dt’, and hence

aw  dw’

Hence the total power emitted is independent of the frame (invariant) for any emitter
that emits symmetrically in its instantaneous rest frame. From the Larmor formula (4.7)
we have

B 1 2 q2(a1)2
CAdmeg3 3

Equations (5.12) allow us to express the accelerations in the instantaneous rest frame
K’ in (5.24) in terms of those in K:

(5.24)

1 2¢°
47’1’60@
1 2¢?
dreo 33

P = [(af)? + ()2

Ya® + ’yzaﬁ). (5.25)
It is a straightforward exercise to show that this can be rewritten in a vector form:

1 2¢% o |v 2
p—— 22 —‘— ‘ : 5.26
47r603c3ﬁy [a ¢ ? (5:26)

Equations (5.25) and (5.26) express the required relativistic generalisation of the Larmor
formula.

IThe parameter u has a specific definition and should not be confused with the symbol for arbitrary
velocities used in earlier sections of this Chapter.
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5.2.2 Directionality of emission

What about the directionality of the emitted radiation, i.e. the counterpart to Equa-
tion (4.6)7 We expect from our earlier discussion of beaming that this should change
drastically for highly relativistic particles.

Consider an amount of energy dW’ emitted in the frame K’ into the solid angle
dQY = —du'd¢’, where ' = cos®’. There is a corresponding amount of momentum
dp’ associated with this radiation, where dp’ = dW'/c. Applying Equation (5.19a) the
corresponding amount of energy emitted into the solid angle d€2 = —dud¢ in the frame
K is

AW = ~v(dW' + vdpl,) = (1 + Bu)dW’, (5.27)
where 5 =v/ec.

Next consider how the solid angle into which the radiation is emitted transforms.
From (5.8) we have

p+p
= ) 5.28
H= 157 (5.28)

Differentiating leads to
du’
W= ST e
V(1 +Bu)
Distances and hence angles perpendicular to the direction of relative motion between
the two frames are unchanged, so d¢’ = d¢. Hence we have

(5.29)

asy
="
Y2(1+ Bu')?

Putting Equations (5.27) and (5.30) together, the energy emitted per unit solid angle

(5.30)

is
aw 3 g dW’
— =~°(1 .
oq = A+ Be) —e
To obtain the the power emitted per unit solid angle, we need to divide by a time
interval. There are two possible choices:

(5.31)

1. dt = vdt’. This is the time interval during which emission occurs in K. We will
write dP, = dW/dt.

2. dtg = ~vdt'(1 — Bu). According to (5.15) this is the time interval for radiation
received by an observer in K, and includes a factor arising from the time light
takes to reach the observer. We write dP. = dW/dt 4.

With these two choices we obtain

dpP, 1 dP’

_— 5.32
a0~ Y1~ fp)® A (5.520)
and dP, 1 dP’
A 5.32b
dQ (1= Bu)* d (5.520)
where we have used the relation
1 1

which follows from (5.28). The quantity dP,/df) is the quantity that would be measured
in astrophysical observations, so we will deal only with that from this point, and will
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drop the subscript r. However, it should be noted that some books (e.g. Griffiths) deal
with dP,/d.
The power radiated per unit solid angle in the instantaneous rest frame of the particle
is given by Equation (4.6):
dP’ 2(41\2 ojn2 o’
_ a(@) sin &7 (5.34)
dasy 1672¢pc3
where ©' is the angle between a’ and the direction of emission in K’. Writing a’ =
a| +a’| and combining (5.32b) and (5.34) we have

P ¢ (P +al)
dQ  16m2epc3 (1 — Bu)?

sin? @', (5.35)

where we have used (5.12). To evaluate Equation (5.35) we need to relate © to angles
in the observer’s frame K. Figure 5.4 illustrates the geometry of the general case in
frame K’. The velocity v defines the direction of transformation between frames and is
taken to lie along the z axis. Without loss of generality we can assume that a’ lies in the
xz plane, and then the relevant angles are as shown. The general case is complicated,
so we consider two simple cases of relevance in astrophysics.

frame K’

Figure 5.4: Geometry in the instantaneous rest frame K'.

Parallel velocity and acceleration

In this case ©' = ' (see Figure 5.4) so

-2
.9 .9 sin” 6
sin“ @ =sin“f = —————— 5.36
(1= Bu)? (530)
where we have used (5.28). Also a; = 0, so Equation (5.35) becomes
dP” . q2 2 sin2 0 (537)

dQ ~ 16m2eoc 11— Bu)s
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In the extreme relativistic case the angular distribution of radiation is as shown in
Figure 5.5. The two lobes of emission familiar from the nonrelativistic case (Figure 4.1)
are bent into the forward direction and stretched, as expected from the earlier arguments

for beaming. The opening angle of the two lobes tends to the angle 0, ~ v~ 1.

Figure 5.5: Radiation pattern for the extreme relativistic case when v || a.

An example of the case a || v is when a high speed electron hits a metal target and
rapidly decelerates, producing bremsstrahlung, or braking radiation. Since the incident
particle is energetic and does not come from a thermal population, we will refer to
this as non-thermal bremsstrahlung. This is the standard procedure for producing X-
rays. The same process occurs in astrophysical situations. For example, during solar
flares electrons are accelerated to mildly relativistic energies (10-100 keV) in closed
magnetic structures in the solar corona (‘coronal loops’). The electrons are constrained
to move along magnetic field lines because of the Lorentz force, and so they follow
magnetic fieldlines within the loops down to the lower levels of the solar atmosphere
(the chromosphere). The density of gas is much higher in the chromosphere and so
the energetic electrons are rapidly braked by Coulomb collisions with ambient ions.
This produces bremsstrahlung radiation that comprises part of the X-ray emission of
a solar flare. Figure 5.6 shows an example. A number of coronal loops involved in a
flare (the dark structures) are shown, imaged in low energy X-rays that are produced
in the corona (by thermal bremsstrahlung, a mechanism which will be discussed in
Chapter 6). The contours show the position of higher energy X-rays produced by non-
thermal bremsstrahlung of energetic electrons colliding with the denser atmosphere at
the bottom of the loops. The high energy X-ray emission is observed to coincide with
the ‘footpoints’ of the coronal loops.

Perpendicular velocity and acceleration

By reference to Figure 5.4, in this case cos ©' = sin#’ cos ¢’, so
sin? 6 cos? ¢
Y21 = B’

using (5.36) and the fact that ¢/ = ¢. Substituting this expression into (5.35) with
a = 0 gives the required result:

sin?@ =1 —sin?# cos® ¢’ =1 — (5.38)

dP, q> a? [ B sin? # cos? (;5] ' (5.39)

dQ  1672¢cd (1—Bu)* 72(1 — Bu)?
In the extreme relativistic case the radiation pattern is as shown in Figure 5.7. In

this case the radiation has a a dominant lobe in the direction of motion, and the other
lobe is wrapped around into two lobes. Most of the radiation is again within a forward
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Figure 5.6: High energy X-ray emission (contours) at the footpoints of solar coronal
loops. (From Hudson, H. and Ryan, J. 1995, Annual Reviews of Astronomy & Astro-
physics 33, 239.)

angle less than § = y~!. In this case ¢ appears in the expression — the pattern is not
rotationally symmetric about the direction of motion.

An astrophysical example of relativistic motion with a L v is a relativistic electron
spiralling around a magnetic field line. An individual electron radiates in the forward
direction as it rotates and so emits like a small lighthouse. The radiation produced is
called synchrotron radiation, which is the mechanism underlying a variety of astrophys-
ical radio sources including the Crab nebula. Synchrotron emission will be discussed in
more detail in Chapter 6.
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Figure 5.7: Radiation in the extreme relativistic case when a L v.

Problem Set 5

1. An astronomical object travels with velocity v at an angle of 6 to the line of sight
of a distant observer. Show that the apparent transverse velocity is:

S vsin 6
PP — (v/c)cos

For a fixed v, find the angle at which v,p, is a maximum. Hence show that v,pp
has a maximum value of yv, which can exceed ¢. Superluminal apparent velocities
are observed with certain extragalactic radio sources!

2. Bradley (1728) observed the aberration of light by which stars appear to be dis-
placed in the sky because of the motion of the Earth. A telescope must be directed
away from the vertical by a maximum of 20.5” to observe stars that would be di-
rectly overhead to a stationary observer. What value for the radius of the Earth’s
orbit does this suggest 7



Chapter 6

Astrophysical Radiation

References: Rybicki and Lightman, Griffiths

In this chapter we will consider a number of astrophysical radiation mechanisms. The
treatment will differ from the previous chapters in that we will not derive all of the
results presented, because the derivations tend to be involved. However, the details can
be found in the references.

6.1 Bremsstrahlung or free-free emission

We have already mentioned Bremsstrahlung, or braking radiation. In the astrophysical
literature bremsstrahlung is often referred to as free-free emission since it arises from
accelerations in collisions between unbound particles.

Collisions of like particles do not produce bremsstrahlung, since in this case the
dipole moment Y ¢;r; is proportional to the centre of mass 3 m;r;, which is a constant
of the motion. In electron-ion bremsstrahlung the electrons are the dominant radiators,
because their smaller inertia results in larger accelerations. Hence in the following we
consider only radiation from electrons in electron-ion collisions.

A full description of bremsstrahlung requires a quantum treatment. Chapters 3, 4
and 5 presented the classical theory of radiation emission. This theory becomes invalid,
for example, when the frequency v of radiation is comparable to the energy of the
emitting particle. In quantum physics radiation consists of photons with energies hv,
and if the emitting particle does not have this energy it cannot emit the photon. The
classical theory also becomes inaccurate for close encounters between particles, since in
quantum mechanics there are no exact trajectories. In the case of bremsstrahlung, a
classical treatment produces formulae that have the correct functional dependence for
most values of the relevant values of the parameters, so we will begin by discussing a
classical model.

Emission by single speed electrons

Consider an electron moving in the fixed Coulomb field of a massive ion. We will assume
the motion of the electron can be approximated by a straight line, i.e. we consider small
angle scattering. Figure 6.1 illustrates the geometry of the situation. The distance of
closest approach b is the impact parameter for the collision.

The dipole moment of the electron is p = —eR, so p = —ev. Taking the Fourier

o7
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A\

Ze

Figure 6.1: Geometry for small angle scattering of a single electron by an ion.

transform of this relation gives
—PP(w) = —— / veldt. (6.1)
2 J_

A characteristic time for the collision is given by the ratio of the impact parameter
and the velocity, 7 = b/v. If wr > 1 then the argument of the exponential in (6.1)
undergoes many cycles during the collision, and the resulting value of the integral will
be small. If wr < 1 then the exponential in (6.1) will be approximately unity. Hence
we can make the crude approximation

~ [ eAv/(2rw?) fwr <1
plw) = { 0 if wr > 1, (62)

where Av is the change in velocity during the collision.
Substituting (6.2) into Equation (4.21) gives an estimate of the total power radiated
by the particle per unit frequency during its interaction with the ion:

aw { e?(Av)?/(6m%epc?) ifwr < 1

do 1 0 if wr > 1. (6.3)

To evaluate (6.3) we need to estimate Av. The velocity parallel to the straight line
path will be the same at large times after the collision as it was at large times before,
by symmetry. Hence we need only consider the change in the component of velocity
perpendicular to the path. Integrating the component of acceleration perpendicular to
the path over all times gives

Ze? /Oo bdt
Av = .
dmeom J_ oo (b2 + v212)3/2

(6.4)

Assuming the velocity is constant along the path the integral can be evaluated, giving

Ze?
Ay=——— 6.5
v 2megmbu’ (6.5)
and hence (4.21) becomes
dw(b,v) 8 Z2eb
== for b 6.6
dw 3 (4mep)3mm2c3h2v? orb <vfw, (6.6)
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and zero for b > v/w.

Equation (6.6) is the result for a single electron-ion collision. Consider the situation
that an electron moves with speed v in an ionised gas (plasma) where the number
density of ions is n;. In time dt the electron will interact with n; (2wbdb) (vdt) ions
with impact parameter between b and b+ db, as shown in Figure 6.2. In a small volume
of plasma dV there are n.dV electrons. Hence the total number of collisions with
impact parameter in the chosen range in the chosen volume and in the chosen time is
(ne dV)n; (2wbdb) (vdt). Tt follows that the total rate of power emitted per unit volume
and per unit frequency range is

dP(v)
dwdV

w/v
= neni27rv/ bdbw7 (6.7)
0 dw

where the upper limit to the integral is taken to be the extreme value of b identified
earlier. To evaluate the integral in (6.7) using (6.6) we need to introduce a lower limit
by to the integral as well. The result is

dP(v) 16nen; Z%eb < v )

= 6.8
dwdV  3(4meg)3m2c3v t (6:8)

bow

1

iy

Figure 6.2: In time dt, a given electron interacts with all ions with impact parameters
b to b+ db in the volume shown.

It remains to estimate by on an ad hoc basis (e.g. it can be taken to be the value
of b for which the straight line approximation is no longer valid). When this is done,
Equation (6.8) is the classical result for small angle collisions. The quantum mechanical
result, including large angle collisions, is

dP(v) 167n.n; 22"

_ (0, w), 6.9
dwdV 3\/5(47r60)3m203vgﬁ(v @) (6.9)

which differs from (6.8) in the replacement of the logarithm by the Gaunt factor
gsr (v, w):

In (boiw) ~ %gﬁ(v,w). (6.10)

The Gaunt factor is typically close to unity, and so the classical calculation is remarkably
accurate. In part this is because the uncertain factors appear inside a logarithm.
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Thermal bremsstrahlung

An important example of bremsstrahlung is thermal bremsstrahlung, where the emitting
electrons come from a thermal population. To obtain the power emitted per unit volume
in thermal bremsstrahlung we need to average the single speed formula (6.9) over a
thermal distribution of speeds,

prob(v)dv v2e~ ™/ (@kBT) gy (6.11)
i.e. we need to evaluate
dPn 4 m \*? /Oo AP(V) o —me? /(25T
= my d 6.12
AVdo ~ 772 (2kBT) o AV " (6.12)

where the factors out the front arise from the normalisation of (6.11). The lower limit
Umin in the integral arises because an electron must have sufficient energy to emit a

photon:
L o

§mvmin =

huw. (6.13)

Evaluating the integral and writing the result in terms of frequency v = w/(2m)

leads to
dP.y,

Wy = Anen T 2em 0T, (6.14)
where
1/2 2.6
n nemiZ7e” —39—— 37-1/277, —1
4= (67TkB) 37re3m2639ff ~ 6.8 x 107 gFW m K"/ *Hz ™" (6.15)

The factor g7 is a velocity-averaged Gaunt factor. Integrating (6.14) over all frequencies
leads to

dP,
d‘;h = Alngn, T2, (6.16)
where
k 1/2 e iZ2 6
A= (@sf) T g~ LA X W0 PEWm K2 e, (6.07)
0

where gg =~ 1.2 is a frequency average of the velocity-averaged Gaunt factors.

In the following we consider optically thin thermal bremsstrahlung sources, which
are common in astrophysics. (The absorption of photons by free electrons becomes im-
portant when source densities are large, and for lower energy photons.) For an optically
thin source at a single temperature, the observed emission follows (6.14) and (6.16),
and on a log log plot the the spectrum is fairly flat below a cutoff at v ~ kgT'/h. Emis-
sion from a volume element AV is proportional to nen;AV. Generally this is equal to
n2AV, which is called the emission measure of the source element. Identification of
a spectrum as thermal bremsstrahlung leads to two physical parameters of the source:
the temperature and the total emission measure, [n2dV.

It is also worthwhile to note that thermal bremsstrahlung is unpolarised, since it
arises from accelerations of electrons in random directions.

An example of thermal bremsstrahlung is the soft X-ray emission from the Sun’s
corona, which is a plasma at about T = 2 x 10°K. Regions of hotter plasma are
produced in the corona during solar flares, as shown in Figure 6.3. The figure shows a
sequence of spectra in the X-ray range (10-100 keV) observed during a flare. The spectra
are at first power laws, indicating a non-thermal population of emitting electrons. Later
in the event a thermal component appears as a very steep spectrum below about 30 keV
(what is observed is essentially the exp(—FE/kgT) part of the thermal bremsstrahlung
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spectrum). Fitting indicates that the thermal source has a temperature of a few times
107K, and so this emission has been called the superhot component. The standard
interpretation of the observations is that a power-law spectrum of accelerated electrons
is produced in the corona during a flare. These particles precipitate to the lower levels of
the atmosphere and produce non-thermal bremsstrahlung there (see Figure 5.6), which
accounts for the power law spectra in Figure 6.3. The braking of the electrons in the
lower atmosphere also produces intense heating, which is believed to lead to ejection of
hot dense material back into the corona. Some of that material produces the thermal
component seen in Figure 6.3.
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Figure 6.3: Sequence of X-ray spectra during a solar flare (From Lin, R., Schwartz, R.,
Pelling, R. and Hurley, K. 1981, Astrophysical Journal Letters 251, 1.109.

6.2 Synchrotron Radiation

Particles spiralling around magnetic field lines are accelerating and hence radiate. If
the particle is nonrelativistic the emission is called cyclotron radiation, and occurs at
the frequency of gyration of the particle. For extreme relativistic particles the emission
is more complicated because of the beaming effect, and the frequency of emission is
broad, extending to many times the gyration frequency: this is synchrotron radiation,
as mentioned in Chapter 5.

Total power in synchrotron radiation

The relativistic equation of motion of a particle with rest mass mg and charge ¢ subject
only to the Lorentz force due to a magnetic field B is

d

g (ymov) = qv x B.

(6.18)
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The energy of a particle is unchanged by a magnetic field, and so v and v are constants.
Separating the motion into components parallel and perpendicular to the field, we have
Dy, e 9 ,p (6.19)
dt dt ymg
It follows from v = const and the first of (6.19) that v, is a constant. The sec-
ond of (6.19) indicates that the particle is subject to a constant acceleration a; =
quyi B/(ymo) perpendicular to v. Hence the motion perpendicular to B is circular mo-
tion. The first of (6.19) indicates that the motion parallel to the field is unaffected
by the field, and so in general the particle undergoes helical motion. The frequency of
gyration is
ay qB
viL ymo’
Applying the relativistic generalisation of the Larmor formula (5.25) with a; =
wpv and assuming the particle is an electron, the power radiated by the particle is

wp =

(6.20)

8
P= gweorgcv2viB2, (6.21)

where r( is the classical radius if the electron, defined by (4.28). This formula applies
for a certain value of v; = wsina, where « is the angle of inclination of the velocity
of the particle to the magnetic field (the pitch angle). For an isotropic distribution of
velocities it is necessary to average over pitch angle:

2 2
2y U [ gin? _ 2
(vi) = 471_/sm adQ = 3 (6.22)

which leads to 4
P= §0'T62C"y2UB, (6.23)

where o7 = 87r3/3 is the Thomson cross section, Up = B?/(2u0) is the magnetic
energy density, and 5 = v/ec.

Spectrum of synchrotron radiation

As mentioned above, cyclotron emission occurs at the frequency of gyration of the
electron. With synchrotron radiation, the beaming of radiation affects the observed
spectrum. To understand why, consider Figure 6.4. As the electron gyrates it produces
radiation in a narrow cone pointing in the direction of motion, with an opening angle
Af ~ ~~1 A distant observer will see a pulse of emission from the electron when the
cone sweeps through the line of sight. The electron performs one gyration in a time
T = 27 /wp. The time interval during which the cone of emission is directed towards
the observer is of order At = (A6/27)T = 1/(ywp). The time interval between the
beginning and end of receipt of radiation by the observer is smaller than this by a factor
1—w/e, since in the time At the electron has moved towards the observer, and so photons
at the end of the pulse are emitted closer to the observer than those at the beginning (this
is the geometrical factor in the Doppler effect identified in §5.14). Hence the duration
of the pulse received by the observer is of order Aty = (ywp) (1 —v/c) =~ (2y3wp)~!.
A pulse of duration At contains Fourier components w < (At)~!. Hence we expect
synchrotron radiation to contain frequencies

w < we = 29%wp. (6.24)

This estimate applies strictly only to particles with a pitch angle & = 7/2. For particles
with an arbitrary pitch angle w. is multiplied by sin c.
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Figure 6.4: Synchrotron emission from a particle with v > 1.

A detailed analysis (e.g. Rybicki and Lightman) indicates that synchrotron emis-
sion from a single electron consists of spikes at integer multiples of wp (harmonics),
up to about w.. The power per unit frequency spectrum can be written in the form
P(w) = p(q, B,a,m)F(w/w.), where F(w/w.) describes the decay of the spectrum at
large frequencies. An important result can be derived from this form alone. In astro-
physics it is common to deal with emission from a power-law distribution of accelerated
particles,

N(v)dy = C~y™Pdr. (6.25)

The number p is called the index of the power law. The synchrotron power from these
particles is obtained by averaging the power per particle over the distribution of particle

energies,
Y2

Y2

Piot(w) = C’/ P(w)y Pdy x / F(w/we)y Pdr, (6.26)
Y1 71

where the limits in the integral represent limits to the particle spectrum. Changing the

variable of integration to = w/w. and noting that w. o 72 (since wp o< v~ 1) leads to

@2
Piot(w) o wf(pfl)/Q/ F(z)zP=3/2 4y, (6.27)

1

The integral can be taken to be constant, and so we have established that a power
law distribution of electrons with an index p in their energy distribution produces a
power-law frequency spectrum of synchrotron radiation, with an index s = (p — 1)/2.

The preceding discussion of synchrotron radiation has implicitly assumed optically
thin sources. The synchrotron process also provides an absorption mechanism of im-
portance in astrophysics, although we will not discuss it here. Finally, synchrotron
radiation is highly polarised. For electrons with a pitch angle of 7/2, the radiation is
linearly polarised perpendicular to the magnetic field. In the more general case the
radiation is elliptically polarised.

6.3 Compton scattering

When we treated Thomson scattering in §4.2 we ignored the possibility of transfer
of energy from the photons of the incident radiation to the scattering charge, i.e. we
assumed that the scattered frequency was the same as the incident frequency. This
assumption is invalid for high energy photons, e.g. X-ray and y-ray photons, as we will
see.
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hv B ¢
zJo
hv' \

Figure 6.5: Compton Scattering.

Figure 6.5 shows a photon of wavelength A scattering elastically from a particle
initially at rest. Conservation of momentum in the vertical direction gives

pesing = (h'/c) sin 6, (6.28)

where p. is the momentum of the electron after the collision, and conservation of mo-
mentum in the horizontal direction gives

hv/c= (hv'/c)cos B + pe cos . (6.29)
Combining (6.28) and (6.29) to eliminate ¢ leads to
p2c? = h?v? — 2h%u/ cos O + W2 (V)% (6.30)
Conservation of energy can be written
hv + moc® = hv' + [moc* + p2c?] ha (6.31)

where my is the rest energy of the electron. Combining (6.30) and (6.31) to eliminate
pe and solving for N = ¢/v' leads to

N =X+ (1 —cosh), (6.32)

where
Ao = R (6.33)
mopc
is the Compton wavelength of the scattering particle, which describes the characeristic
change in wavelength of a scattering event with the particle. For electrons A\¢ =2.4 pm.
We see from this that scattering from electrons is adequately described by Thomson
scattering at visible wavelengths, but this is not the case at y-ray wavelengths.
It is possible to calculate a scattering cross section for Compton scattering. Quantum
mechanics is required and the expression (the Klein-Nishina formula) is rather daunting.
For the cases of low and high energy photons the result is simpler. Introducing the ratio

hv
moc?

x = (6.34)
of the photon energy to the electron energy, the limiting forms of the Klein-Nishima
cross section are

— 26 4.2
Uc—{ or[l =2z 4+ 2. ] forx<1 (6.35)

Sopa~'(In2z + 1) for x > 1

We see that the Thomson cross section is recovered in the classical limit.



CHAPTER 6. ASTROPHYSICAL RADIATION 65

As implied by its name, the inverse Compton effect is the normal effect in reverse.
A highly energetic particle (usually an electron) collides with a low energy photon and
produces a high energy photon. This process can be treated by Lorentz transforming to
the rest frame of the electron, applying Equation (6.32), and then tranforming back to
the observer’s frame. Figure 6.6 illustrates the geometry of the process in the observer’s
frame K and in the electron rest frame K’. At this point we change notation, and
denote the energy of the photon before the collision E, and label the energy after Fj.

E,
=] ) 0
0 0, 1
X T X
E E
K K’

Figure 6.6: Geometry of inverse Compton scattering in an observer’s frame K and in
the electron rest frame K'.

From the energy transformation formulae (5.19a) we have

E' =+FE (1 — Zeos 9) (6.36)
c
and v
E, =+FE; (1 + —cos 91) . (6.37)
c
Applying (6.32) in the rest frame assuming = < 1 gives
E/
AN 7Y}
Ei~FE [1 T e (1 —cos @)] , (6.38)
where
cos © = cos b} cos ' + sin 0’ sin 6 cos(¢’ — @), (6.39)

and where ¢} and ¢ are the azimuthal angles of the scattered and incident photon in
the rest frame.

The important thing to note from these formulae is that E; ~ v2E. The Lorentz
transformation to the rest frame introduces a factor of v, and the transformation back
to the observer’s frame also introduces a factor «. This indicates that it is possible to
produce photons of very large energy by inverse Compton scattering.

The inverse Compton effect is thought to account for X-ray emission from a variety of
astrophysical sources. For example, certain X-ray sources are believed to be accreting
black hole binaries that involve relativistic flows. These systems produce X-rays by
inverse Compton scattering of ambient photons by electrons in the flows.

6.4 Transverse electromagnetic waves in a plasma

So far we have assumed that the medium through which astrophysical radiation prop-
agates is a vacuum. Actually the medium is (in general) a low density plasma, and
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the motion of the charges in the plasma in response to a passing electromagnetic wave
alters the transmitted wave.
To understand the effect, it is sufficient to consider plane wave solutions

B =Bexpi(k-x—wt), E=Eexpi(k-x—wt) (6.40)

to the Maxwell equations. With this assumption Equations (3.1) become:

k- E=2" ik-B=0
€0

W ~

ik x E = iwB ik x B = yioJ — — E. (6.41)
C

The procedure of looking for plane wave solutions is equivalent to Fourier transforming
the Maxwell equations in space and time.

Since electrons have much less inertia than ions, it is reasonable to consider only the
motion of electrons in the plasma in response to a passing electromagnetic wave. The
ratio of the magnetic force on an electron in the plasma to the electric force is

evx<Bl B_v (6.42)
e|E| E ¢
since for a transverse EM wave E/B = c¢. Hence for nonrelativistic motion of the
electrons the electric force is much greater than the magnetic force, and the equation
of motion of an electron becomes

mv = —eE. (6.43)

Substituting plane wave solutions in this equation leads to

~ € =~

v=—E8. (6.44)

wwm
The amplitude of the current density in the plasma as a result of the motion of the
electrons is

J = —nev = oE, (6.45)

where .,
o= (6.46)

mw

is the conductivity of the plasma.
Inserting plane wave solutions in the charge conservation equation (3.2) (which is
equivalent to two of the Maxwell equations) gives

—iwp+ik-J =0. (6.47)

Combining (6.45) and (6.47) gives

p=ow 'k-E. (6.48)

Equations (6.45) and (6.48) relate the source terms in the Maxwell equations back
to the fields. Substituting these expressions for the sources back into the Maxwell
equations leads to a source-free version of the Maxwell equations:

ik-¢E=0 ik-B=0

ik x E = iwB kxB=—iZE

SeE. (6.49)
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where
o

(6.50)

1€Qw
is the dielectric constant of the medium. Using (6.46) we can rewrite the dielectric
constant as

e=1- (ﬁ)z, (6.51)

w

wy = (”—62>1/2 (6.52)

is the plasma frequency. Numerically,

where

wp = 56.4/ns™L. (6.53)

The next step is to solve Equations (6.49). First note that these equations imply

that k, E and B form a triad of orthogonal vectors. Taking k crossed with k x E and
using (6.49) leads to

2 ~
(k2 - LZ—26> E = 0. (6.54)

For a non-trivial solution (E # 0) we see that

(6.55)

which can be rewritten using (6.51) as
w? = w) + k. (6.56)

Equation (6.56) is the dispersion relation for the propagation of transverse electromag-
netic waves in the plasma. This equation implies that w, is the minimum value of
the frequency of the waves: transverse EM waves cannot propagate below the plasma
frequency. This fact has many important consequences. For example, it explains why
AM radio waves are reflected by the Earth’s ionosphere (the ionised upper layer of the
atmosphere), but FM radio waves pass through. At some level in the ionosphere the
plasma density is sufficiently high that the local plasma frequency is greater than the
frequency of the AM radio wave, and at that level the wave is reflected (the energy of
the wave has to go somewhere). However, FM waves have a higher frequency, which is
always above the local plasma frequency in the ionosphere, and hence they are trans-
mitted unimpeded. The reflection of low frequency radio waves can be used to probe
the ionosphere from the ground. Measurement of the time delay for the return of pulses
at different frequencies provides a means to determine the density of the ionosphere as
a function of height.
Provided w > w,,, monochromatic waves propagate at the phase velocity

w c
where
w2112
ny = eY/? = [1 - (—”) ] (6.58)
w

is the refractive indexr of the medium. The phase velocity of these waves is always
greater than c¢. This is not a problem however, since an infinite monochromatic wave
does not convey any information. To encode information it is necessary to modulate
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the wave, which involves sending a number of different frequencies. The envelope of any
modulation (which conveys the information) travels with the group velocity

vg = g—: = n,c, (6.59)
which is always less than c.

The dependence of the phase and group speeds on frequency is called dispersion.
An astrophysical application of dispersion concerns radio waves from pulsars, which
are compact objects (believed to be rapidly rotating magnetised neutron stars) which
produce pulsed radio emission. The standard interpretation of the emission is that a
continuous beam of radio emission is produced by some means at the magnetic pole of
the pulsar. The magnetic and rotation axes of the pulsar are not aligned, so the rotation
of the pulsar causes the beam to sweep across the sky, leading to a pulse of emission at
an observer when the beam crosses the line of sight to the observer.

Suppose a pulsar is at a distance d from Earth. The time for a pulse at a frequency
w to reach the Earth is .y

S

) (6.60)
0o Yg

tp =

The plasma frequency in interstellar space is low (~ 10%Hz), so we can expand the
square root in the group velocity:

1 wp 2] 1 1 fwp\2
N ~ L 1w
Y _c{l (w)] c[1+2(w)}’ (6.:61)
leading to
d 1 [*,
ty = - + 52 wyds. (6.62)

The first term in (6.62) is the free space transit time, and the second is the plasma
correction. Based on observations of pulse arrival at different radio frequencies w it
is possible to measure the rate of change of arrival time with respect to frequency.
Using (6.62) and the definition of plasma frequency we have

dt —e?

£ = D (6.63)

dv  megcwd

where p
’Dz/ nds (6.64)
0

is the dispersion measure. If an estimate of the typical number density in interstellar
space is included (e.g. n ~ 3 x 10*m~3), then an estimate of the distance to the pulsar
can be made.

6.5 Faraday rotation

In treating the effect of EM waves on electrons we have ignored the magnetic force. This
is no longer appropriate if there is a background magnetic field By in the plasma. Intro-
ducing a magnetic field brings a new characteristic frequency, the cyclotron frequency,
which is Equation (6.20) in the limit of nonrelativistic motion:

eBo
wp = ——.

m

(6.65)
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The magnetic field also defines a preferred direction, and it turns out that the propaga-
tion of waves depends on their direction with respect to Bg. In the following discussion
we restrict attention to the case of waves propagating along the magnetic field.

The equation of motion of an electron in the plasma can now be written

dv

m— = —cE — ev x By. (6.66)

We assume the magnetic field is oriented along the z axis,
By = Boz. (6.67)

The effect we are interested in here is Faraday rotation, which occurs because left-
hand and right-hand circularly polarised waves propagate with different speeds along a
magnetic field. Hence we introduce the electric field at a point produced by a circularly
polarised wave propagating in the z direction (see Problem Set 6):

E(t) = Ee “!(X Fiy) = Ee ™t (6.68)

The minus sign corresponds to a RH wave, and the plus sign to a LH wave. Corre-
spondingly we assume the velocity variation has the same form,

v(t) = ve WHX Fiy) = Ve WL (6.69)

Substituting Equations (6.67), (6.68) and (6.69) into (6.66) leads to

~ —ie =

where the upper sign applies for RH waves and the lower for LH waves. The current in

the plasma is J = —nev = oE, which allows identification of the conductivity,
02
ine
= —. 6.71
7 m(w +wg) (6.71)
From the definition of the dielectric constant (6.50) it follows that
w2
=1-—2 6.72
o w(w+wg) (6:72)

From the definition of the refractive index (6.58) it follows that RH and LH circularly
polarised waves travel with different phase speeds. This result might be thought to
be a curiosity, but it is not, because a plane polarised wave can be decomposed into a
linear superposition of a RH and a LH circularly polarised wave. These components of
the wave have different phase speeds, and the result is that the wave does not keep a
constant plane of polarisation, but has an electric field vector that rotates as the wave
propagates. This effect is Faraday rotation.

To estimate the magnitude of this effect, note that the angle through which a circu-
larly polarised wave rotates in propagating a distance d is

d
P+ =/0 kids, (6.73)

where

ety l@) ) e
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applying (6.72) in the limit w > wp,wp. For a plane polarised wave, the angle of
rotation is Af = %(QSJF — ¢_), and substituting the approximation (6.74) leads to

1 d ) e3 d
Af = 2w2c/0 wyowp ds = W/o nBds. (6.75)
Equation (6.75) has been derived for a magnetic field along the line of sight, but in fact
it holds in general with B interpreted as the component of the field along the line of
sight.

Since A6 varies with frequency, measurements at different frequencies of the plane of
polarisation of polarised sources can in principle provide information about the magnetic
field along the line of sight (subject to an assumption about the plasma number density).
However, the interstellar magnetic field is believed to change direction often, and so this
method provides only a lower bound to actual field strengths.
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Problem Set 6

1. Of the pulsars known in 1972, the largest dispersion measure was 400 pc.cm™3. If
the average interstellar electron density is ~ 3 x 10* m~3, is this pulsar likely to
be in our galaxy?

2. Demonstrate that:

(a) Equation (6.68) represents RH and LH circularly polarised radiation,

(b) a plane polarised EM wave can be written as the superposition of two circu-
larly polarised waves.



PHYS377 Astrophysics 2001
Assignment 1 due Friday March 23

1. The flux of sunlight at the earth’s surface is 1.4 kWm~2. What would be the
radiation pressure due to this flux on

(a) a reflecting surface?

(b) an absorbing surface?

2. A pinhole camera consists of a small circular hole in a box, as shown in Figure 1.

e L —

Figure 1: A pinhole camera.

The hole has diameter d and is a distance L from the film plane. Show that,
provided d is small, the flux F,, at the film plane depends on the brightness field
1,(0, ¢) according to the approximate relationship

mcostl

v~ TfQIU(ov ¢)7

where the focal ratio f is L/d. (Hence a pinhole camera provides a simple method
for measuring I,,.)

3. An optically thick sphere with radius R has temperature T and emits thermally.
It is surrounded by a shell of thermally emitting material at a temperature T3
and with a thickness x < R, as shown in Figure 2. The shell of material has an
absorption coefficient «,, that is large near a frequency 1y and small otherwise,
as shown in the inset diagram. The width of this absorption feature is small
compared with kgT;/h (i = 0,1). There are no other sources of emission or
absorption, and scattering can be neglected.

Consider two rays A and B received by a distant observer. Ray A comes from
the centre of the sphere and ray B is just outside the limb of the sphere. The
intensity I,, 4 is the intensity received by the observer along ray A, and I, g is the
intensity received along B.

(a) Write down expressions for I, 4 and I, p in terms of the given variables.
(b) Sketch I, 4 and I, p as functions of v

i. when T7 < Ty,
ii. when T7 > Tj.

4. The spectrum of the Sun is characterised by dark lines called the Fraunhofer lines:
emission in these lines is less than emission at neighbouring frequencies, and the
lines are said to be in absorption. During solar eclipses bright colours are seen
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Figure 2: Details for Question 3.

from the limb of the Sun: spectra reveal that the frequency of emission matches
the Fraunhofer lines, and the apppearance of colours indicates that emission in
the lines is greater than at neighbouring frequencies, so that the Fraunhofer lines
are being seen in emission. The region producing the colours during eclipses is
the chromosphere, a thin layer of the solar atmosphere above the photosphere.

Explain:

(a) the appearance of the Fraunhofer lines in absorption,

(b) the appearance of the Fraunhofer lines in emission during solar eclipses.
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1. The equation of motion of a bound electron that is harmonically driven by an EM
wave is
mi +mwir = —eEy coswt,

where m is the electron mass, x describes the position of the electron, wy is
the natural frequency of oscillation of the electron due to its binding, Ej is the
amplitude of the driving electric field, and w is the driving frequency.

(a) Show that x = x coswt is the steady state solution, with

_eEy/m

o = .
w2 — w2

(b) Using the dipole approximation, show that the time averaged total power
radiated by the electron is

e4E§ wt

- 12meem2c® (w2 — w@)?’

(¢) The total cross section o(w) for scattering is defined by P = Fo(w), where
F = %ceoEg is the time averaged flux of the incident electromagnetic wave
driving the system. Show that

or
(1 — (wo/w)?]?’

where o is the Thomson cross section.

o(w) =

(d) Determine the limiting forms of o(w) for w < wp and w > wy. As discussed
in the lectures, what do these cases correspond to?

2. Assume that an observer at rest with respect to the fixed distant stars sees an
isotropic distribution of stars, i.e. in any solid angle d2 the observer sees dN =
NdQ/(4w) stars, where N is the total number of stars.

Suppose that a second observer (whose rest frame is K') is moving with a rela-
tivistic velocity 8 = v/c in the x direction.

(a) What is the distribution of stars seen by the moving observer? In other
words, what is the distribution function P(¢’,¢’) such that the number of
stars in the solid angle d€¥ is P(0', ¢')dS¥'?

(b) Show that P(#',¢") = N/(4mw) when 8 = 0.
(c) Show that [ P(0',¢')dQ = N.

(d) Sketch the angular distribution of stars seen by the moving observer. In what
direction do they “bunch up”? [In drawing this diagram, think carefully
about which direction §’ = 0 corresponds to.]

3. Consider a sphere of ionized hydrogen plasma undergoing gravitational collapse.
The sphere can be assumed to be at a constant isothermal temperature Tj and to
have a constant density (total mass M) during the time the sphere is observed.
The radius of the sphere R(t) is a decreasing function of time. The sphere emits
thermal bremsstrahlung radiation.



(a) What is the total luminosity (power output) of the sphere as a function of
Moy, R(t) and Ty assuming the sphere is optically thin?

(b) At time t; during the observing period the sphere becomes optically thick.
Obtain an expression for the total luminosity of the sphere after that time,
in terms of R(t) and Tp.

(¢) Sketch the luminosity as a function of time. Based on this graph, arrive at
an implicit relationship, in terms of R(t1), for the time ¢; when the sphere
became optically thick.

4. The Crab Nebula emits synchrotron radiation. Taking the magnetic field in some
of the bright structures (‘filaments’) observed in the nebula to be about 10~* Gauss
(1 Gauss = 10~* Tesla), show that:

(a) a non-relativistic electron in the filaments radiates at about 300 Hz, inde-
pendent of energy,

(b) 10%V and 10'2eV electrons in the filaments radiate in the radio and visible
regions respectively.
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1. The flux of sunlight at the earth’s surface is 1.4 kWm 2. What would be the
radiation pressure due to this flux on

(a) a reflecting surface?

(b) an absorbing surface?

2. A pinhole camera consists of a small circular hole in a box, as shown in Figure 1.

— [ —

Figure 1: A pinhole camera.

The hole has diameter d and is a distance L from the film plane. Show that,
provided d is small, the flux F, at the film plane depends on the brightness field
I,(0, ¢) according to the approximate relationship

7 cost 6
F,~ 52 710, 0),
10,0
where the focal ratio f is L/d. (Hence a pinhole camera provides a simple method
for measuring T,,.)

3. An optically thick sphere with radius R has temperature Ty and emits thermally.
It is surrounded by a shell of thermally emitting material at a temperature T}
and with a thickness z <« R, as shown in Figure 2. The shell of material has an
absorption coefficient «,, that is large near a frequency vy and small otherwise, as
shown in the inset diagram. There are no other sources of emission or absorption,
and scattering can be neglected.

Consider two rays A and B received by a distant observer. Ray A comes from
the centre of the sphere and ray B is just outside the limb of the sphere. The
intensity I,, 4 is the intensity received by the observer along ray A, and I, g is the
intensity received along B.

(a) Write down expressions for I, 4 and I, p in terms of the given variables.
(b) Sketch I, 4 and I, 4 as functions of v

i. when T < Ty,
ii. when T7 > Tj.
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Figure 2: Details for Question 3.

4. The spectrum of the Sun is characterised by dark lines called the Fraunhofer lines:
emission in these lines is less than emission at neighbouring frequencies, and the
lines are said to be in absorption. During solar eclipses bright colours are seen
from the limb of the Sun: spectra reveal that the frequency of emission matches
the Fraunhofer lines, and the apppearance of colours indicates that emission in
the lines is greater than at neighbouring frequencies, so that the Fraunhofer lines
are being seen in emission. The region producing the colours during eclipses is
the chromosphere, a thin layer of the solar atmosphere above the photosphere.

Explain:

(a) the appearance of the Fraunhofer lines in absorption,

(b) the appearance of the Fraunhofer lines in emission during solar eclipses.



PHYS377 Astrophysics 2001
Assignment 2 due Monday April 30

1. The equation of motion of a bound electron that is harmonically driven by an EM
wave is
mi + mwir = —eFy cos wt,

where m is the electron mass, = describes the position of the electron, wq is
the natural frequency of oscillation of the electron due to its binding, Ej is the
amplitude of the driving electric field, and w is the driving frequency.

(a) Show that z = zq coswt is the steady state solution, with

eEo/m

o = B

5 -
w? —wg

(b) Using the dipole approximation, show that the time averaged total power
radiated by the electron is

B2 wt

~ 12meem?2ce3 (w2 — w2)?’

(c) The total cross section o(w) for scattering is defined by P = Fo(w), where
F = %ceoEg is the time averaged flux of the incident electromagnetic wave
driving the system. Show that

or
[1 = (wo/w)?]?’

where o7 is the Thomson cross section.

o(w) =

(d) Determine the limiting forms of o(w) for w <K wp and w > wy. As discussed
in the lectures, what do these cases correspond to?

2. Assume that an observer at rest with respect to the fixed distant stars sees an
isotropic distribution of stars, i.e. in any solid angle df) the observer sees dN =
NdQ/(4r) stars, where N is the total number of stars.

Suppose that a second observer (whose rest frame is K') is moving with a rela-

tivistic velocity § = v/c in the x direction.

(a) What is the distribution of stars seen by the moving observer? In other
words, what is the distribution function P(#’,¢') such that the number of
stars in the solid angle dQ' is P(0', ¢")dQY'?

(b) Show that P(#',¢') = N/(4x) when 8 = 0.

(c) Show that [ P(¢',¢)dQ = N.

(d) Sketch the angular distribution of stars seen by the moving observer. In what

direction do they “bunch up”? [In drawing this diagram, think carefully
about which direction #’ = 0 corresponds to.]



3. Consider a sphere of ionized hydrogen plasma undergoing gravitational collapse.
The sphere can be assumed to be at a constant isothermal temperature Ty and to
have a constant density (total mass Mp) during the time the sphere is observed.
The radius of the sphere R(t) is a decreasing function of time. The sphere emits
thermal bremsstrahlung radiation.

(a) What is the total luminosity (power output) of the sphere as a function of
My, R(t) and Ty assuming the sphere is optically thin?

(b) At time ¢; during the observing period the sphere becomes optically thick.
Obtain an expression for the total luminosity of the sphere after that time,
in terms of R(t) and Tp.

(c¢) Sketch the luminosity as a function of time. Based on this graph, arrive at
an implicit relationship, in terms of R(t1), for the time #; when the sphere
became optically thick.

4. The Crab Nebula emits synchrotron radiation. Taking the magnetic field in some
of the bright structures (“filaments’) observed in the nebula to be about 10~* Gauss
(1 Gauss = 10~* Tesla), show that:

(a) a non-relativistic electron in the filaments radiates at about 300 Hz, inde-
pendent of energy,

(b) 10%V and 10'2eV electrons in the filaments radiate in the radio and visible
regions respectively.
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Part A

Attempt THREE (3) questions from Part A
(60 marks in total, all questions are of equal value)
Answer questions from Part A in a separate book

(a) (8 marks)
The equation

F, = /I,, cos 0 dS2 (1)

relates intensity 7, (Wm 2Hz !'ster ') to flux F, (Wm™?).

Use (1) to show that the flux F; at a distance r from an infinite plane with a
uniform brightness B is
fo = 7TB0,

independent of the distance r.
(b) (2 marks)

One version of the radiative transfer equation is

dI,
ds

= —a, I, + j,. (2)

For a,, = 0, write down the solution to this equation.

(c) (10 marks)
A spherical cloud of gas has radius R, temperature 7" and is a distance d from
Earth (d > R). The cloud emits thermally at a rate P, = 4mj, (this is the
power output per unit volume and per unit frequency range) and the cloud is

optically thin.
(é\—\ earth
J b

i. What is the brightness of the cloud, as measured from Earth. Give the
answer as a function of distance b from the cloud centre, assuming that the
cloud is viewed along rays parallel to a line to its centre (see diagram).

ii. What is the flux of the whole cloud, as measured at Earth?
iii. If the cloud were optically thick, what would the answer to (c) ii. be?




2.

(a)

(5 marks)

A positive charge is moving with a (constant) relativistic speed along the x axis
and then decelerates to rest, ending up at rest at the position zy at time ¢,. The
deceleration takes a short time At.

Sketch a 2-D diagram of the electric field lines of the charge at a time t; > t;,
including showing the field at a distance r > ¢(t; — ty + At) from the charge.
Indicate the position z; that the charge would have reached at time ¢; if it had
not decelerated.

(5 marks)
The displacement of a point charge ¢ oscillating with a fixed amplitude xq and
a given frequency w may be written

x = xgcos(wt).

Use the dipole approximation to obtain an expression for the time-averaged
power emitted by the charge.

(5 marks)
Consider a free electron oscillating in response to the passage of an electromag-
netic wave with electric field

E = Ejcos(wt)z

in the vicinity of the electron.

Use the dipole approximation to obtain an expression for the time-averaged
power emitted by the electron.

(5 marks)

In about half a page, describe an example of the scattering process described
by your result in (b) OR describe an astrophysical example of the scattering
process described by your result in (c).



3.

(a)

(7 marks)
Show that the relationship between velocities u and u’ measured in frames K
and K’ (frame K' moves with respect to K at speed v in the +x direction) may
be written
uly + v u'
I w, = L
v(1 +vuy/c?)

U= g
1+ vuf/c?

where the subscripts || and L label components parallel and perpendicular to
the relative motion of the frames, and where v = (1 — v?/c?)~1/2.

(5 marks)
If # and ' denote the measured angles of propagation of a photon with respect
to the x and 2’ axes in the two frames, show that

cosf +v/c sin ¢’
0 = inf = .
o8 14 (v/e)cosf'’ S v[1+ (v/c)cost| (3)
(5 marks)
Setting 8’ = 7/2 in (3) gives
1
sinf) = —. 4
: ()

Use (4) to explain, in about half a page, the phenomenon of beaming, i.e. that
a highly relativistic particle emits radiation in a narrow cone in its direction of
motion.

(3 marks)

Sketch the radiation pattern produced by a non-relativistic particle with acceler-
ation a (indicate a in your diagram), and sketch the radiation pattern produced
by a highly relativistic particle with velocity v and acceleration a, where v || a.



4. The relativistic equation of motion of an electron in a magnetic field B may be
written

g(’}/m[)V) = —ev x B,

in the notation of the lectures.

(a)
(b)

(c)

(3 marks)
Why is v a constant for the electron?

(3 marks)
Write down equations describing the rate of change of the components of velocity
v|| and v parallel and perpendicular to the magnetic field.

(5 marks)

Summarise the argument that the electron undergoes helical motion around a
magnetic field line. What is the frequency wpg of the motion perpendicular to
the magnetic field, in terms of e, B, v and mg?

(4 marks)

Write down the acceleration a; of the electron. Use the relativistic Larmor
formula to derive an expression for the total power radiated by the electron.
What is this radiation called?

(5 marks)

For a non-relativistic particle, the radiation is produced at the frequency wg.
For a relativistic particle, the radiation is no longer at a single frequency. In
about half a page give a qualitative explanation of why a relativistic particle
produces a broad spectrum of radiation (you do not need to derive an expression
for the range of frequencies emitted by the electron).



5. An astronomical object moves with relativistic velocity v at an angle 6 to the line of
sight to a distant observer.

(a) (6 marks)
Show that the apparent transverse velocity of the object is

vsinf
Vapp = :
PP 1 — (v/c) cos

(b) (6 marks)
For a fixed v, find the angle at which v, is a maximum. Hence show that v,pp
has the maximum value yv, where v = (1 — v?/¢?)~"/2 is the Lorentz factor of
the object. It follows that v,p, can exceed c. Why is this not a problem?

(c) (8 marks)
Suppose the object is emitting radiation with a frequency w’, measured in the
rest frame of the object. Show that the frequency of radiation received by the

distant observer is ,
w

v[1 = (v/c)cosf]

w =




Part B

Attempt THREE (3) questions from Part B
(60 marks in total, all questions are of equal value)
Answer questions from Part B in a separate book

6. Consider a star with a linear variation in gas density,

-
:c]-__ )
P p( R)

where p. is the central density and R is the radius of the star.
Show that for this star:

(a) (6 marks)
the mass varies with radius according to

473 3t
mW:M(E‘ﬁ)’
where M is the total mass of the star,

(b) (6 marks)
the pressure varies with radius according to

5T 24 r2 2873 9t
Por)=Zapr2(1- =2 2L "L
(r) = 36 Gre ( SR 5B 5R4>’

(c) (8 marks)
under ideal gas conditions, and in the absence of radiation, the temperature
varies according to

o Gumpy R ( T 19 2 9 r3>

() =3"7%



7.

(a)

(b)

(2 marks)
Define the optical depth of a gas. Show how it is related to the volume opacity
of the gas.

(6 marks)
Show that if the source function is isotropic the equation of radiative transfer

can be written
Cc dPR
= —=——,
k ds

where k is the Rosseland mean opacity.
(8 marks)

Show that if there is thermodynamic equilibrium then

oF = 2aCmdl
3k dr

where a = 4r/c.

(d) (4 marks)

Show that under the above conditions, high energy photons (hv ~ 4kT') are the
prime source of heat conduction.



8. (a) (6 marks )
List some of the different types of temperature that can be used to describe a
system that is not in thermodynamic equilibrium. For each, outline the phe-
nomenon to which it is related.

(b) (8 marks)
Starting from Boltzmann’s law, outline the derivation of the Saha equation.
Explain its significance.

(c) (4 marks)
Using the Saha equation explain:

i. the importance of some trace elements in determining the degree of ionisa-
tion of hydrogen at a given temperature,

ii. the variations in temperature between giant and dwarf stars of the same
spectral class.

(d) (2 marks)
Sketch how the degree of ionisation of a given species varies with temperature.
Relate this to the Saha equation.

10



9.

(a)

(4 marks)
Outline the various processes that affect the width of spectral lines.

(2 marks)

Define the rectified line profile and show its functional dependence on the line
opacity.

(2 marks)

Define the equivalent width of a spectral line.

(6 marks)
Describe the growth of a line and indicate the processes responsible for its shape.

(6 marks)
Indicate how the excitation temperature of a gas can be determined from ob-
servations of the curves of growth for two series of lines.

11



10.

(a)

(6 marks)
Show that in the atmosphere of a star the temperature is given by

3 2
T4 = ZTéﬁ‘ <T+ g) .

(8 marks)
Show that if the source function is linear with optical depth,

S, =a+br,
then the intensity I, (u) as a function of p = cos @ is given by
I,(0) = a+ bu.

Hence show that the limb darkening law is

~
—

r) _ B s
(0)_1—6+E\/ﬁ

where 5 = b/(a + b), and where R is the radius of the star and r is the radial
distance from the centre of the visible disk.

(6 marks)
Describe briefly how to investigate the temperature structure of an atmosphere
if the limb darkening law is known.

~

12



	phys377
	assgt1
	assgt2
	ex_phys377_2001

